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1. INTRODUCTION

Recent years have seen a renewed interest in urban rail
transit systems for public transportation. In part this interest
has come about because of the many environmental problems associated
with the automobile. However, environmental problems are also
associated with rail transit systems. This report focuses on one
problem of particular concern: noise near elevated rail transit
structures. Those who have lived or worked near an old (all-steel
structure) elevated transit line do not need to be convinced that
this problem must be solved before rail transportation can be a

viable alternative to the automobile.

1.1 Background

As systems manager for the U.S. Urban Mass Transportation
Administration (UMTA) Urban Rail Supporting Technology Program,
the Transportation Systems Center (TSC) is conducting research,
development and demonstration efforts directed towards the intro-
duction of improved technology in urban rail systems applications.
As part of this program, TSC is conducting analytical and experi-
mental studies directed towards noise and vibration reduction in

urban rail systems.

The UMTA Rail Noise Abatement effort will bring together
and improve existing and new elements into a unified technology
consisting of: design criteria for establishing goals, noise
control theory, design methods, test procedures, and appropriate
documentation. The program has been organized into four concurrent
and interrelated parts which will be closely coordinated with each
other by TSC. They are:

1. Assessment of Urban Rail Noise and Vibration Climates

and Abatement Options;

2. Test and Evaluation of State-of-the-Art Urban Rail




Noise Control Techniques;
3. Wheel/Rail Noise and Vibration Control Technology;

4. Track and Elevated Structure Noise and Vibration
Control Technology.

The contract under which this report was prepared deals with Part U4
of the overall program. This report deals with the development and

use of analytical models for predicting elevated structure noise.

1.2 Program Objectives

The noise and vibration generated by rail transit vehicles
on an elevated structure are the result primarily of wheel/rail
interactions. The fluctuating forces generated at the wheel/rail
interface due to surface roughness, impact at rail joints, and
wheel flat spots or other irregularities result in vibrations of
the wheel and the rail. These vibrations, in turn, result in
radiated noise from the rails and the wheels and transmission of
vibration into the supporting track structure as shown in Fig. 1.1.
When the vehicles are on an elevated structure, the sound radia-
tion from the supporting structure often exceeds the radiation from
the rails, wheels, and other vibrating surfaces of the vehicles.
Thus, we refer to the noise as elevated structure noise even
though the rail vehicle is the cause of the noise.

Many miles of elevated track structure are used in densely
populated urban areas. The noise generated by these structures
can be quite intense. In addition, the distance from the struc-
ture to the nearest residential dwelling is often small. These
two factors combine so that many people are exposed to noise levels
which they find annoying. 1In addition, the problem is made even
more complex by the limited capability of many older structures to
withstand the added weight of a noise control treatment. A study
is presently being conducted for the NYCTA to assess the structural
status of their elevated structures.
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Elevated structure noise is also a problem for those plan-
ning new systems or line extensions. In most cases the wayside
noise is an issue of great concern to those communities near the
proposed right-of-way. Therefore, every effort must be made to
insure that reasonable noise criteria are met. See Reference [1]
for a more detailed discussion of criteria. Since modifications
to an operating line are extremely expensive, it is important that
noise control be incorporated into the initial design of these

structures.

Several techniques have appeared over the years for the
prediction and control of radiated noise from rail vehicles and
structures. These techniques are reviewed in an Interim Report

prepared earlier during the course of this study [1].

The noise from elevated structures that are presently in
use by the various rail transit properties can be predicted with
sufficient accuracy to allow one to estimate the noise impact from
proposed systems using the same types of structure. However, the
prediction methods are empirical and do not allow one to predict the
effect of design changes on the radiated noise. Thus, without a
more detailed prediction model it is impossible to proceed with a
well defined systematid program to reduce the noise. A primary
objective of this study has been to develop a model for predicting
noise from elevated structures. It is anticipated that this model
will allow the design of reliable and cost effective noise control

procedures.

A second objective of our study has been to investigate the
noise and vibration problems associated with underground transit
lines. When the line is located underground in a tunnel, wayside
noise problems are largely eliminated. However, two new problems
arise. The passengers of the transit vehicles may be exposed to
high noise levels because of reverberant buildup of the sound
levels in the tunnel and transmission of acoustical energy into
the vehicle interiors through vents, windows, doors, etc. Also,




the vibration induced by the wheel/rail interaction is transmitted
to the tunnel wall and through the soil to adjacent buildings
where it is felt or heard as a low frequency rumbling noise. A
detailed discussion of these two problems is presented in

Reference [1].

The vibration problem has been of particular concern in the
construction of new subway lines because of anticipated public
complaints. In an effort to reduce the vibration transmission a
number of techniques have been suggested and tried. The most
successful of these is to isolate the vibrations of the rail from
the tunnel floor by means of resilient rail fasteners and floating
track slabs. A second report prepared by Cambridge Collaborative
presents mathematical models for predicting the performance of
floating slabs [2].

1.3 State of the Art in Elevated Structure Noise Control

The dominant source of elevated structure noise is known to
be the wheel/rail interaction. It is known that wheel and rail
roughness along the rolling surface lead to random forces that
excite the rail into vibration with a broad range of frequencies.
These forces also excite the car wheels into vibration. Both the
wheels and rails radiate noise. However, at present, techniques
to predict the relative contribution to the total wayside noise
from these sources are not refined. A specific accomplishment of this
report is to present a method for predicting the noise radiated by

the rail.

It is also known that rail joints and wheel flats produce
impact forces that set the rail and wheels into vibration. 1In
this report we do not distinguish between the different mechanisms
by which the rail is excited into vibration. We know that the
elevated structure noise is to first approximation directly propor-
tional to the rail vibration levels. Therefore, noise control




programs for wheel trueing and rail grinding and for replacement

of jointed rail with continuously welded rail where possible will
lead both to reductions in rail vibration and elevated structure
noise. An estimate of the magnitude of the reductions is indicated
in Table 1.1

The rail vibration acts through the rail fasteners to apply
fluctuating forces to the deck of the elevated structure, as shown
schematically in Fig. 1.2. The vibrations of the deck increase in
level until the vibratory power transmitted from the rail to the
deck is balanced by the sum of the power dissipated in the deck due
to damping, the power radiated as noise, and the power transmitted
from the deck to the supporting girders. Similarly, the vibration
levels of the girders build up until a power flow balance is
achieved. The state-of-the-art allows a prediction of the noise
radiation from the entire structure[l]. However, since the prediction
procedure is empirical, the radiation from the individual compo-
nents of the structure and the transmission of vibration from one

component to another cannot be determined without further analysis.

In this report we advance the state-of-the-art by presenting
a generalized prediction model. 1In this model the vibration and
noise radiation of each component is considered. The model allows
us to predict the effect of increasing the damping of individual
components or of changing the structural design so that the
vibration transmission from one structural component to another is
reduced.

1.4 Summary of Results

The noise prediction model presented in this report has been
developed analytically and validated by comparison of the predic-
tions with results of field measurements for three types of
elevated structure in Boston. The comparisons are sufficiently
good that we have some confidence for using the models to predict
the results of various noise and vibration control modifications.
On the other hand, we must admit to some uncertainty. The elevated

structure noise prediction model has given reasonably accurate

6




CORRECTION FACTORS *
ADD
JOINTED RAIL 8 to 10 dBA
WHEEL FLATS 8 to 10 dBA
NEW OR ROUGH RAILS 3 to 6 dBA
ROUGH WHEELS 3 to 6 dBA
CORRUGATIONS UP to 15 dBA

NOTE : CORRECTION FACTORS ARE TO BE ADDED TO
NOISE LEVELS EXPERIENCED WITH SMOOTH

WHEELS ON SMOOTH JOINTLESS RAIL .

* ADD ONLY ONE CORRECTION FACTOR —
THE LARGEST APPLICABLE

TABLE 1.1 EFFECT OF WHEEL - RAIL CONDITION ONRADIATED NOISE
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predictions only for the three structures studied. This is no absolute
guarantee that the model will work for other types of structures.

Also, we should point out that the field data we obtained was used

both to evaluate and to improve preliminary versions of the model

and to validate the final version. In spite of these uncertain-

ties the authors of this report have confidence in the general

validity of the model.

Use of the prediction model to evaluate various noise control
options indicate that steel plate girders* are the single most
important noise source. A reduction in girder-web radiation can be
achieved either by application of a damping treatment to increase
the damping of the webs (and thus reduce their vibration) or by en-
closing the girders to reduce their radiation efficiency.

The model indicates that use of vibration isolation
materials between the deck and the girders would be effective only

after the web damping is increased.

The model indicates that the use of very soft resilient
rail fasteners can reduce the transmission of vibration to the
elevated structure. However, by using fasteners that are too soft
the effective damping of the rail vibrations by the fastener is
decreased and the noise radiation by the rail is increased. In
addition, requirements for good ride and safety impose a lower

limit on fastener stiffness.

1.5 Organization of the Report

Rail vibration plays a major role in determining the elevated
structure noise. For this reason, we start, in Section 2 of this
report, with a complete discussion of models for predicting rail

vibration.

®
A description of terms for elevated structures is given in

Section 3.1




We continue in Section 3 with a description of the
different types of elevated structure that are in use and show
the development of a model for predicting vibration and noise

radiation levels for different components of the structure.

A comparison of prediction with measured levels for three
types of structure used on the Boston MBTA is presented in Section
4. Finally, in Section 5, we review the prediction model and
discuss how it can be used to design effective noise control
treatments. Engineering prediction procedures based on the model

developed in this report are presented in a separate report [3].

10




2. RAIL VIBRATION

We start our discussion by considering the vibrations of the
rail. During a train pass-by, the force on the rail at each wheel/
rail contact point is made up of three components: a steady DC
force due to the static load of the train; a slowly fluctuating
force due to gross vehicle motions; and, finally, a rapidly fluctua-
ting force due to the interaction of wheel and rail roughness, wheel
flat spots, rail joints, and wheel slip. In this report we are
primarily interested in the rapidly fluctuating forces, since the
vibrations due to these forces generate noise that is in the audible

range of frequencies.

The high frequency, rapidly fluctuating forces due to the
wheel/rail interaction impart energy to the rail in the form of
bending and torsional vibrations. This energy propagates along the
rail away from the wheel/rail contact point. During propagation
part of the rail vibrational energy is dissipated by various damp-
ing mecahnisms in the rail and in the rail fasteners. A second
part is radiated as noise. And, finally, a third part is trans-
mitted to the track support structure.

In our study of elevated structure noise, we consider the
rail vibration as the source of excitation for the remaining
structure. Also, since the maximum rail vibration levels during
a pass-by are 10 to 15 dB higher than levels observed for other
components of the structure, the rail must be considered as a
potentially important noise source in spite of its small radiating
area. Our approach will be to determine first the maximum vibra-
" tion levels during a pass-by, and then to relate the maximum
levels to the spatial distribution of the levels. Both the maximum
levels and the spatial distribution of the levels are needed to
calculate the vibrational energy transmitted to the structure and
the noise radiated by the rail.

11




2.1 Basic Wheel-Rail Interaction Mechanisms

The basic mechanisms of the wheel/rail interaction are
being studied under a parallel effort funded by the U. S. Depart-
ment of Transportation. Based on the results of this study [u4],
at least a qualitative understanding of the different mechanisms

has been achieved. Three distinct mechanisms are involved:

(1) "Roar": The broadband noise during a train pass-by is due to
the roughness of the wheel and the rail. This roughness
imposes a small relative displacement between the wheel and
the rail which gives rise to rapidly fluctuating forces at

the wheel/rail contact point.

(2) Impact: Rail joints, switches, and other rail discontinuities
lead to impact noise. Similarly, wheels that are "out of
round”" or have "flats" cause an impact to occur for each

revolution of the wheel.

(3) Squeal: When a train is on curved track, an intense squeal
can occur. This noise is due to a number of mechanisms which
cause the wheels to slide on the rail. During the sliding,
stick-slip mechanisms lead to large fluctuating forces and

intense noise radiation.

2.2 Prediction of Maximum Response

In past studies the vibratory response of the rail to wheel
and rail roughness has been formulated in terms of the wheel and
rail roughness spectrum, the vehicle speed, and the driving point
impedances of the wheel and the rail [5]. The spectrum of the
vibratory velocity of the rail at the wheel/rail contact point is
given by
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Z
w

_w W
5 [¢w(k-§) + ¢r(k-§)] (2.1)

where Sv(m) is the spectrum of the vibratory velocity, w is the
radian frequency, S is the vehicle speed, Zr is the point impedance
of the rail, Z, is the point impedance of the wheel, $,(k) is the
roughness spectrum of the wheel, ¢r(k) is the roughness spectrum of
the rail, k is the wavenumber, and | | signifies the magnitude of

a complex number.

A direct verification of Eq. 2.1 requires measurement of the
wheel and rail roughness spectra. A device to accomplish this
measurement is being developed [4]. However, at present the predic-
tion of maximum rail vibration levels during a train pass-by is not
within the state-of-the-art. Therefore, we must rely on an
empirical approach based on measured data.

Equation 2.1 can be used to infer the effect of various
parameters on the maximum vibratory level of each rail during a
pass-by. At intermediate frequencies, in the approximate range 100
to 1500 Hz, the wheel impedance, Zw, is believed to be higher than
the rail impedance, Z, [5]. In this case the rail response spectrum
given by Eq. 2.1 is independent of the rail impedance to first
approximation. Thus, we can assume that the maximum vibratory
levels for the rails do not depend on track design or the design of
the elevated structure in the frequency range 100 to 1500 Hz*. Use
of resilient wheels decreases the wheel impedance and this general
assumption is invalid. See Ref. [4] for a more detailed discussion.

Vehicle speed affects both the magnitude and frequency of
the fluctuating forces at the wheel/rail interface and the value of

® . .
We do not mean to imply that the complete spatial history of the
rail vibration is independent of track design.
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the rail impedance. However, in Ref. [6] it is shown that the
effect of vehicle speed on impedance can be neglected as long as
the speed is much less than the propagation velocity of free
bending and torsional waves in the rail. This result is used to
great advantage in our remaining work, since it allows us to study
the dynamic response of elevated structures in terms of their
response to fluctuating forces that do not move along the track.

Assuming that the impedances are not affected by vehicle
speed, we see from Eq. 2.1 that the dependence of the response
spectrum on speed is determined by the term 1/S and by the depen-
dence of the roughness spectra on wavenumber. The limited data
that is available show that the roughness spectra tend to decrease
in amplitude with increasing wavenumber [4]. Although general
trends are difficult to identify, the average trend is for the
amplitudes to decrease with between a third and fourth power of
wavenumber.* In this case, the rail response spectrum in any given
band should increase with between a second and third power of
vehicle speed. A third power speed dependence for A-weighted way-
side noise levels is commonly observed [1]. Thus, for the purposes
of this report we will assume that the maximum vibratory levels of

the rail also show a third power dependence on vehicle speed.

Mechanisms leading to impact at the wheel/rail interface are
also affected by vehicle speed. Field data for rail vehicles on
jointed rail or with wheel flats indicate that the wayside noise
level exhibits a third power dependence on vehicle speed.* This
suggests that the maximum vibratory levels of the rail due to impact
mechanisms also exhibit a third power dependence. In the work to

%
Many exceptions to this general trend have been observed. The

reader should see Ref. [4] for a more complete discussion.
tIndividual events show a second power dependence [4] but the
number of impacts per unit time increases linearly with speed
giving an overall third power dependence.
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follow we assume this to be the case.

Based on empirical evidence we know that impact noise
mechanisms can increase the A-weighted noise level from at-grade
track 10 dB(A) above levels for smooth continuously welded rail
with trued wheels. We assume that the rail vibration increases by
a similar amount. In the following Sections we do not treat the
vibration and noise due to impact separately. We assume that the
levels discussed are average levels with the averaging time being

long enough to average over impacts.

2.2.1 Review of Reported Data

Extensive data on rail vibration were taken during tests of
the BART vehicles [7]. The purpose of the tests was to investigate
the effects of four different rail fasteners on radiated noise and
vibration. The rail was continuously welded and in a reasonably
smooth condition as were the vehicle wheels (although no roughness

measurements were taken).

The maximum vertical vibratory velocity levels, L,> during

pass-bys at 60 mph (96 km/hr) were in the range 108 to 114 dB

8

referenced to 5 x 10 ° m/sec*, i.e.

108 < L, < 114 dB (2.2a)
with
Vrms
L, = 20 log,, —=85 _ (2.2b)
v 10 5 % 10 8
and v is the maximum rms (root-mean-square) velocity of the rail

rms
vibration in meters per second. The octave band frequency spectra

*1S0 Standard TC 43/SC 2/WG 2.
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are shown in Fig. 2.1 These show maxima in the 31.5 Hz band and
the 500 Hz band. However, from the point of view of predicting
elevated structure noise the levels in the 500 Hz band are much

more important.

The range of octave band levels for the five types of rail
fastening is quite large, particularly at lower frequencies. Based
on the discussion of the previous Section we would expect the levels
in the 125, 250, 500, and 1000 Hz octave bands to be the same, since
the wheel impedance is supposedly higher than the rail impedance
in this frequency range. The range of levels in these bands must
be attributed to unknown effects and considered in our evaluation of
the accuracy of the prediction model that uses these measured levels
as input data. The range of values at low frequencies, below 125 Hz,
may indeed be due to the differences in rail fastener properties,
since the rail impedance typically exceeds the wheel impedance at

these low frequencies.

Torsional vibration levels for the rail are usually not
reported. For this reason we have instrumented a rail on a section
of track of the MBTA Red Line Quincy Extension. The rail was
continuously welded. Maximum levels during a pass-by for vertical
and torsional vibration are shown in Fig. 2.2. ©Note that the
vibrational levels of the rail foot due to vertical motion are
significantly larger than levels due to torsional motion in the
octave bands centered at frequencies below 2000 Hz. In addition,
the noise radiation and transmission of vibration to the structure
is much less for torsion than for vertical vibration at these
frequencies. Based on this fact we can ignor the contribution of
torsional vibration to the overall wayside noise levels in the
lower frequency bands. At higher frequencies, 2000 Hz and above,
radiation due to torsional vibration will increase the total rail

radiation by approximately 3 dB.

Our approach in the work to follow will be to use the maxi-
mum octave band levels shown in Fig. 2.1 as a basic input to our
prediction model except for specific comparisons with experimental
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data where measured rail vibration levels are available. We are
assuming, in essence, that changes in rail fastener or elevated
structure design do not change the maximum rail vibration level.
It will be possible to reduce the errors caused by assumption
when a model for predicting the maximum rail vibration levels
during a pass-by is available.

The vibration levels used as an input to our prediction
model will be taken as representative of continuously welded rail
with both wheels and rails in good condition, i.e. smooth. The
effects of rail joints, roughness, and wheel flats will be taken
into account by raising the levels in Fig. 2.1 by the amount
indicated in Table 1.1.

2.3 A Simplified Vibration Prediction Model

The simplest model for studying the rail vibration is an
infinitely long beam on a continuous elastic foundation. The
dynamic properties of the beam are set to represent those of the
rail. The stiffness of the foundation is set to represent the
stiffness of the rail fasteners. We assume that the rail fasteners
are mounted on a rigid support. We also ignor shear deformations
in the rail and the efféctfof non-continuous fasteners, i.e. the
effect of fastener spacing. The excitation of the rail will be
modeled as a stationary point force.

A detailed study of more refined models for predicting the
rail vibration is presented in Appendix I. As a result of this
detailed study we have concluded that the simple model presented
in this Section gives sufficiently accurate results that it can
be used as the basis for an elevated structure noise prediction

model.

The equation of motion for bending of the beam on an elastic

foundation is given by

32u a”u
mr —5 + BI’ - + KR. u = f(t) §(x) (2.3)
at Ix
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where m, is the mass of the rail per unit length, u is the downward
rail displacement, Br is the bending stiffness of the rail% Ko is
the effective stiffness of the fasteners per unit length of rail,
f(t) is the downward force applied to the rail, t is the time
coordinate, x is a spatial coordinate down the track, and &§(x) is

the Dirac Delta function, where

f dx  u(x) &(x) = u(0) (2.4)

The solution to Eq. 2.3 is found by using Fourier transforms. If
we define the transform pair,

£0t) —21? J dw F(w) el®t (2.5a)

-iwt

F(w) dt f(t) e (2.5b)

then the transform of the rail response at point x is given by

-ik_x -k_x
U(x,w) = E(g) -j§ {-1e¢e r e T } (2.6a)
r k
r
for x > 0 and w > w,,
and
k x
R S
k x k x
Ux,w) = _Eéﬁl_ j? e V2 cos —— + sin —— (2.86b)
2/2 B_ X V2 V2
r r

for x > 0 and w < wr

Br = EI where E is Young's Modulus and I is the cross-section
moment of inertia.
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where

b L w2
kI‘ = B—' '('m—) - ll (2-7&)
r r
K
wl = X (2.7b)
r m
T
and | | signifies the absolute value. The parameter k., is the

wavenumber of freely propagating bending waves in the rail. It is
reciprically related to the vibration wavelength, A , by

A= (2.8)

Equation 2.6a shows two terms. The first represents a
bending wave traveling away from the excitation point at the free
bending-wave speed for the beam, Cpos where

(2.9)

The second term represents a near field term that decays rapidly
as we move away from the excitation point. The beam behavior
changes at frequencies below the rail resonance frequency, w, -
For these frequencies, both terms decay exponentially and a

traveling wave term does not exist.

The effects of damping in the rail fasteners and in the
rail are accounted for by letting the foundation stiffness, K, ,

and the rail bending stiffness, Br , be complex,

(s
-
1]

Br(l + i nr) (2.10)

and

~
1

Kz(l + 1 nf) (2.11)
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where B, and K, are now real guantities, n. is the damping loss
factor of the rail, and Ne is the damping loss factor of the
foundation.

When damping is included, the rail response 1s given for
x > 0 and all values of w by Eq. 2.6a with k; substituted for kr’

where
k!' = k {sin L i cos g} (2.12a)
r m Yy Yy '
wz 2 ) 1/2
1-=]| +n

K 2 f
Y % “r

r 1+ nr

2
w
1 - 2 +
KQ nP[ w2] nf
sin 6 = 5 jﬁ r 5 (2.12¢)
r km 1+ nr
and
w2
K ;7 - (1 + n, ﬂf)
2
cos 6 = E—iu r (2.124)
r k 1l +n
m r

The magnitude of the response at the point of excitation is found
from Eq. 2.6a to be

2
|UCo,w) |2 = AT (2.13)

2 6
8 Br km

22




To calculate the transmission of vibration from the rail to other
structures and to calculate the sound radiation, we require the
amplitude of vibration along the entire length of rail. Substitu-
ting k; for k., in Eq. 2.6a we find

. 0 6
Ulx,w) 2 o1 e—kax sing , 1 e—2kmx cosy
U, |2 2 2
(2.14)

-kmx(sing + cos%) 0 9
+ e sin kmx(sini + cosE)

where km and 6 are given by Egs. 2.11. At high frequencies,
w >> W, and for small values of damping, the following approxi-

mations are possible,

2
y w My
K. (2.15a)
m B
r
.0
sin o = 1, (2.15b)
and
n n wz
5] r f r
cos o = - + v 7 (2.15¢)
w
Equation 2.14 can be written as
2 -k_x
loe,wd |2, (% +sink x) e ™ + % e ¥ (2.16)

|UCo,w) |2
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where

&

n Ne @
r £

= _—
o k (2 >

) (2.17)
m

€
)

The first term in Eq. 2.16 decays very rapidly at an average rate
of 55 dB per wavelength, A , where for small damping and high

frequencies

- Br 1/4
5 (2.18)

At 500 Hz, the wavelength for a typical rail is approximately

6.5 ft (2 meters). The second term in Eq. 2.16 decays at a slower
rate that is governed by the damping. It is this term which
dominates the vibration transmission and sound radiation for small
values of damping.

In the work to follow we will formulate the vibration

transmission in terms of the rail response spectrum, S (w),

ulx)

where

S (w)

w(x) %— IU(x,w)|2 (2.19)

and U(x,w) is the Fourier transform of the displacement at point

x. We will also make use of an integrated displacement spectrum,
Iu(w), where

I, (w) = [ dx Su(x)(w) (2.20)

and the integration is over all values of x. From Eq. 2.1l we
find
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I (w)
u = 3 { +
S (w) k ¢}

(2.21)
m .
u(o) m sin

Flo

. B
sin Iy + cos

At high frequencies and for light damping Eq. 2.21 can be written

as

I () B, T/*,
&y for w >> w (2.22)
S w2 m, neff r

uo) ¥

where the effective damping is given by
(2.23)

Figure 2.3 shows the total integrated rail response spectrum for a

broad range of frequencies and damping values.

2.4 Rail Radiation

The rail is a radiating surface of complex cross-sectional
shape, high vibrational levels, and relatively small radiating
area (that is, compared to the rest of the track support structure).
From an acoustical point of view, the rail can be modeled with
reasonable accuracy as a long cylinder. The effective diameter of
this equivalent cylinder can be determined by two methods. First,
the effective radius, a, could be taken to be 1/2 of the largest
rail cross-sectional dimension (i.e. rail height), which implies
a = 3.3 inches for 115 RE rail, and an effective radiating peri-
meter of 1.7 ft. Using this radius, the theoretical result from
Ref. [8] for the radiation efficiency of a vibrating cylinder can
be used to predict the radiated acoustic power from the rail. The
alternate technique, which provides a higher degree of confidence
in the result, determines the effective cylinder radius by fitting
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the theoretical result to actual measurements.

2.4.1 Radiation Efficiency

The rail radiation efficiency, o , is defined by Eq. 2.2k,

(w)
o(w) = crag o (2.24)
Po %o v
where wrad(m) is the spectrum of radiated acoustic power, f6 %o is

the characteristic impedance of air, P is the radiating perimeter,
and Iv(m) is the integrated spectrum of the rail vibratory velocity.
The theoretical expression for radiation efficiency is taken from
Ref. [8]%,

_ 2_ ' ' -1
o(w) = = {kba[Jl(koa) + Nl(koa)]} (2.25)

where kolS the acoustic wavenumber, a is the cylinder diameter,

J'
1
the derivative of the l order Neumann Function. Values for the

is the derivative of the 18 order Bessel Function, and N1 is

radiation efficiency can be inferred from data obtained by exciting
a finite length of rail into vibration in a reverberant room and
measuring radiated power. Values based on data from Ref. 5] are
shown in Fig. 2.4. The solid line represents the theory fitted to
the data with a = 2.9 in., and P = 1.5 ft. The agreement of the
data with theory appears quite good, certainly within the scatter
of the data. Note that data is presented for both vertical and
horizontal excitation and that there is no appreciable difference
between the results. In light of this agreement the radiation

®
A slight error exists in the result given by Ref. [8]. The
correct expression is given above.
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efficiency of Fig. 2.4 will be used for all rail radiation
calculations and the effective radiating perimeter of the equiva-
lent radiating cylinder will be taken to be 1.5 ft. The integrated
velocity spectrum is found by multiplying the integrated displace-
ment spectrum given by Eq. 2.21 or 2.22 by m2.

2.4.2 Directivity

In addition to the power radiated by the rail, its directi-
vity in the horizontal plane is also of interest. Consider an
infinite cylinder lying along the x, axis whose vibration is

2
confined to the Xq direction, as shown in Fig. 2.5.

The vector x represents the position of the observer
relative to some arbitrary origin. The vector y represents the
vector from the origin to a radiating element of the cylinder. The
scalor parameter r is the distance from the radiating element to
the observer. The Fourier transform of the pressure at x is given
by [9]

© -ik _r
ik, cos 6y e
P(x,w) = - e Fs(yz,w) dy2 (2.286)
-0
where r = |x - y| , cos 6, = (8r)/(ax3) is the direction cosine,

ko is the acoustic wavenumber, and F3(y2,w) is the Fourier trans-
form of the force exerted by the cylinder on the acoustic medium.

We now define the angle ¢ which is the angle between the
vector x and the X1 Xg Plane. If the distance from the observer
to the cylinder is much larger than the spatial extent of vibration

on the cylinder* the far field approximation

*
This can be shown to be true in time histories of rail vibration

with realistic values for rail damping at all frequencies of
importance, since the spatial extent of the vibration due to each

point force at the wheel/rail contact points is on the order of

a few feet in length.
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s
"

Ix] +y, sin ¢ (2.27)

can be used and the transform of the pressure is given by

-ik x|
ik cos 8, e -ik y,.sin¢
P(x,w) = - Q 3 dy2 e 0”2 Fs(yz,w)
b x|

e OO

(2.28)

We observe that the integral of Eq. 2.28 is in the form of an

Fourier transform over Ype Thus,

P(x,0) = - o . ?s(ko sin ¢,w)  (2.29)

where fs is the wavenumber transform of F3(y2,w),

iky2
dy2 Fs(yz,w) e (2.30)

F (k,w)

- OO

The dependence of the radiation on the angle ¢ is given by
f‘3(ko sin ¢,w). The dependence of the radiation given by cos 63
is due to the dipole nature of the vibrating cylinder, and is
multiplicative with ¢ dependence.

Assuming the force on the rail due to the surrounding fluid
is proportional to the rail velocity, we can obtain the directivity
of rail radiation from the wavenumber dependence of the transform
of the rail vibrational velocity, ﬁr(k,w). To find ﬁr(k,w) we
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Fourier transform the equation of motion for the rail displacement,

Eq. 2.3, in both time and space and multiply by iw. The result is

Gr<k,w) = e 5 Flw) (2.31)
! -
Kz + k Br w mr

where the effective stiffness of the fasteners per unit length
of rail, Ké , is allowed to be complex to include the effects
of damping,

Kl = Kl(l + i nf) s (2.32)

and where ne is the fastener damping loss factor. The dependence
of radiation upon ¢ is given by \7P(ko sin ¢,w), and the directivity

function, D(¢,w), is given by

A . 2
D(¢,w) = 1PCrag,w |2 | Vot sin ¢50)]

5 - 5 (2.33)
|P(r,0,w) | |V, (05w) ]

where |P(r,¢,w)|2 is the magnitude squared of the complex pressure
amplitude at a point in the far field a distance r from the rail

at an angle ¢ from a line perpendicular to the rail and IP(r,o,w)I2

is the magnitude-squared of the pressure at a point, the same distance
distance from the excitation point on the rail and at right angles

to the line of travel. Using Eq. 2.31 in Eq. 2.33 we find

K
1 + ( lu nf)2
B k
D(¢,w) = n £.r (2.34)
k- sin’ ¢ K
(1 - -2 ; )2 +( 3 . nf)Z
k B k
r r r
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where

2
2o (2.35)

and w, is the resonance of the rail on its fasteners,

K
w = (2.36)

()
=

This directivity function is plotted in Fig. 2.6 with frequency
and damping as parameters. The cosine-squared directivity is
plotted for comparison. Notice that rail radiation can be quite
directive, and that damping plays an important role. The direc-
tion of maximum intensity changes with frequency, since the rail
is a dispersive medium.

Past data studies have shown that the wayside noise from
rail vehicles on at-grade track is directive with the direction
of maximum radiation being at right angles to the line of travel,
¢ = o [1]. Based on this observation, it was suggested that the
noise radiation was prédominantly from the wheels, which were
expected to radiate as acoustic dipoles. Recent measurements have
shown the wheels to be fairly omnidirectional radiators [u4].

Based on the above work, we note that the radiation from
the rail is also directive, with the direction of maximum radiation
being frequency dependent. Although the past measurements of
wayside noise have not been sufficiently detailed as to allow
confirmation of the directivity patterns shown in Fig. 2.6, we
suggest that the observed directivity in wayside noise may be due
to the directivity of the noise radiated by the rail.
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3. ELEVATED STRUCTURE NOISE

The elements of the elevated structure that contribute to
the wayside noise are shown in Fig. 3.1l. The most significant
of these are the rail, the deck, longitudinal girder webs, and
girder flanges. A description of these terms and of the different
types of elevated structure will be given in Section 3.1. The
columns of the elevated structure may be significant noise sources
if they are steel plate. However, since their total surface area
is much less than that of the structure spans, we can ignor the
column radiation until the elevated structure noise is reduced
approximately 10 dB(A) from a base condition of no noise control

treatment.

This Section of the report is organized into four basic
subsections. In Section 3.1 we describe the different types of
elevated structure that will be considered. Section 3.2 discusses
in general the possible methods of analysis. Then, in Sections
3.3 and 3.4 we describe the development of a model to predict the
vibrational levels of the structure and the resulting noise
radiation. In Section 4 we will describe the application of the
prediction model for elevated structure noise to three actual

structures.

3.1 Classification of Elevated Structures

The type of structure used on an elevated transit right-of-
way has a significant effect on the wayside noise levels. The
most influencial variables are the type of construction material
and the method of track fastening. Variables that have great
significance with regard to the basic design of the structure such
as span length and design load have little direct influence on noise.

The elevated structures currently being used by transit

properties in the United States were constructed over a time period
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covering almost 100 years. Due to changes in technology, materials
availability, and construction techniques during this period, the
types of structure in use are quite varied. In this report we are
concerned with the noise from all types of structure. The results
are applicable both for the modification of older structures to
reduce noise and for the design of new structures so that they

generate less noise.

For the purposes of this study the following general classi-

fication of elevated structures has been helpful.

lattice-web girder, open deck

This type of structure is shown in Fig. 3.2. It consists
of an open deck of wooden ties supported by two longitudinal
girders. The girders are fabricated by bolting or riveting
together a number of angle-section steel beams. The web of the

girder is formed by a lattice of beams.

The ties in this type of structure are clamped to the top
flange of each girder. The rails are fastened directly to the
ties using tie plates and a variety of fastener designs. 1In
typical cases the spacing between the griders is slightly greater
than the track gauge so that the rails are approximately over the
inside edges of the girder flanges.

The lattice-web, open deck structure has been used exten-
sively in New York and Chicago. However, the method of construction
required by this type of structure has been obsolete and unecono-
mical for many years. Our interest in these structures is there-
fore limited to methods by which existing structures can be

modified to reduce noise.

The most significant feature of the lattice-web, open deck
structure with regard to noise is its openness. By use of a
lattice type of girder fabrication the noise radiating area is
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FIG. 3.2 TYPICAL LATTICE OR OPEN-WEB GIRDER, OPEN TIE
DECK ELEVATED STRUCTURE
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kept to a minimum. Also by use of riveted or bolted junctions the
damping of the structure is increased to values well above those
experienced in welded junctions. On the other hand, the openness
of the structure provides no shielding for noise radiated by the
rails, wheels, and other surfaces on the vehicle.

Wayside noise measurements indicate that the noise levels
for this type of structure are approximately 10 dB(A) above levels
for at-grade operation.* The increase is most pronounced in the
lower frequencies. However, because of the small radiating area
the increase at very low frequencies, below 100 Hz, is not as great
for this type of structure as for others described below.

plate-web girder, open deck

This type of structure is very similar to the lattice-web,
open deck structure. The difference is in the construction of
the grider webs. Instead of a lattice of angle-section beams,
steel plates are used. In older structures of this type the girder
flanges are formed by bolting or riveting angle-section beams to
the web plates. 1In newer structures the girders are formed by
welding the flanges to the web plate.

A typical plate-web, open deck structure is shown in
Fig. 3.3. Although this type of structure is no longer used for
new construction, we are interested in it because of the many miles

of guideway that exist on this type of structure.

The most significant feature of the plate-web, open deck
structure with regard to noise is the plate web. Vibrations of

3
Noise levels given in this Section are based on the limited amount

of data that appears in the literature [1] and a few of the
measurements that we have taken during the course of this study.
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the web are high and because of its large area it is an efficient
radiator of noise. When the flanges are joined by bolts or

rivets, the damping is greater than when the flanges are welded.
For the bolted or riveted construction, the wayside noise levels
are increased approximately 10 dB(A) above levels for at-grade
operation due to radiation from the structure [1]. For welded
construction, with its lower damping levels, the elevated struc-
ture noise levels can be expected to be even higher. In both cases
the most significant increase is at the lower frequencies.

steel girder, concrete deck

The steel girder, concrete deck structure is commonly used
in new construction. In this type of structure, a concrete deck
is supported by steel girders in one of a number of different
configurations as shown in Fig. 3.4. The rails are supported
directly on the concrete deck by means of resilient rail fasteners.

In the newer constructions the girders are fabricated from
welded plate. Because the damping with this type of fabrication
is very low, the increase in wayside noise is again approximately
10 dB(A) above levels for at-grade operation [10].

concrete girder, concrete deck

This type of structure consists of a concrete deck supported
by solid or hollow-section concrete girders. A number of different
configurations are shown in Fig. 3.5. In all cases the rails are
directly fastened to the deck using resilient rail fasteners.

The concrete girder, concrete deck structure has been
extensively used for the BARTD system. Wayside noise measurements
for this system show that the radiation from the structure causes
a very small increase in noise relative to at-grade levels. A
study of the data indicates that the noise level from structural
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FIG. 3.4 TYPICAL STEEL PLATE-WEB GIRDER, CONCRETE SLAB
DECK ELEVATED STRUCTURE
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FIG. 3.5 CONCRETE ELEVATED STRUCTURES
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radiation is 5 to 10 dB(A) below direct radiation from the rails,

the wheels, and other vibrating surfaces of the train cars [1].

Because of the low level of structural radiation, it was
possible in the BARTD system to reduce the wayside noise by using

noise barriers extending up from the concrete deck.

All-concrete structures are markedly quieter than all-steel
structures to which no noise control treatment has been added.
Thus, in noise critical areas where elevated structures are to be
used on a new system, it is common practice to specify that all
concrete structures be used.

The most significant feature of the all-concrete structure
is its weight. The high mass per unit surface area of the
structure and the relatively high damping of concrete compared to

steel explain the lower noise radiation of the concrete structure.

structures with ballasted track

On some elevated structures the track is laid on tie
and ballast. Noise studies have indicated that when ballast track
is used the increased noise due to radiation from the structure is
small. This conclusion has been found to be true both for all-

steel supporting structures and for concrete structures.

Use of ballasted track is one method of noise control for
elevated structures. However, it is impractical for existing
structures because of the very large increase in the loading of
the structure.

In this report we give little attention to structures with
ballasted track since the elevated structure noise should not be
a problem.*

®
Noise from the rails and the car itself may, however, be a problem

in some cases.
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other types of structures

Many other types of elevated structures exist on transit
systems in the U.S. However, the number of miles of right-of-
way on these structure types is small compared to that of the five

types described above.

3.2 Methods of Analysis

Prediction of the vibration and noise radiation for the
types of structure introduced in the previous Section is difficult
because of the complexity of the structures and the large frequency
range of interest (50 to 5,000 Hz). Several prediction techniques
have been considered. We have selected a type of Statistical
Energy Analysis (SEA) in our development of a general prediction

model because of fundamental limitations in the other techniques.

3.2.1 Review of the Different Methods

Classical normal mode analysis requires that the vibrations
of the track structure be described in terms of the response of
the different modes of vibration. Typically, the mode shapes
and resonance frequencies are calculated for the undamped system.
Modal damping loss factors are then applied in an ad-hoc fashion.
When damping is included in the calculation of mode shapes, the
shapes can become frequency dependent unless the damping is
uniformly distributed throughout the structure. The complexity of
the analysis is greatly increased for frequency dependent mode

shapes.

The classical normal mode analysis is not generally useful
for track structures. Many reasons can be given. First, the
number of modes participating in the vibration of a typical section

of track structure or elevated structure span is so large that even
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new computer techniques cannot handle the problem over the complete
frequency-range of interest. Second, the modes of adjacent track
sections are coupled so that the vibration is transmitted from one
section to the next. And third, the damping is not uniformly
distributed throughout the structure so that the mode shapes are
frequency dependent. Practical problems also exist. The accuracy
with which parameters describing the structure and its boundary
conditions is not sufficient to allow an accurate determination of
mode shapes and resonance frequencies beyond the first few modes
of the structure.

Finite element techniques are potentially useful for the
analysis of track structures, but have been ruled out because of
the large number of elements required to determine the vibration
over the complete frequency range of interest. For example, in
the analysis of noise radiation from elevated steel structures, the
spacing of the elements on the webs of the supporting girders must
be less than one-half of the bending wavelength at the highest
frequency of interest. Field data indicate significant noise
radiation from a structure with one-half inch thick webs at frequen-
cies up to 1000 Hz. For this case the finite element spacing must
be less than 8 inches so that approximately 750 elements are
required to study the vibration of just one web on a typical 80 ft

long span.

Many of the limitations of the normal mode approach can be
eliminated by allowing the modes to be coupled. The procedure is
to divide the complete track structure into its individual
structural elements: e.g. for the case of an elevated structure:
rail and fasteners, track slab or ties, supporting girders, and
supporting columns. The mode shapes and resonance frequencies of
each element are then found. Boundary conditions are required to
calculate the mode shapes and resonance frequencies are obtained by
assuming the vibration of all other structural elements to be zero.

The modes of the individual structural elements are used in the
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equations of motion for the complete structure to obtain a series
of coupled equations in the modal amplitudes. The physical
interpretation is that the complete structure is represented by a
set of coupled single-degree-of-freedom oscillators.

The methods used to analyze the coupled oscillator set
depends on the strength of the coupling. For very light coupling,
the calculations can be cascaded. First, the response of each
oscillator that is directly excited by external forces is calculated.
Then, this calculated response is used as an input to determine the
excitation forces on indirectly excited oscillators. In studying
track structure vibration, the cascading approach is equivalent to
the assumption that the rail vibration is unaffected by the track
structure under the rail fasteners. For example, to study the
vibration transmitted to an elevated structure one would calculate
the rail response assuming the deck to be motionless; use the
calculated rail vibration to determine forces acting through the
rail fastener onto the deck; calculate the deck response to these
forces assuming the supporting girders to be motionless; use the
calculated deck vibration to determine forces and moments acting
on the girders; and finally, calculate the girder vibration.

When the coupling between oscillators representing the
complete structure is moderately large, the effect is to cause a
small shift in resonance frequencies and a large increase in the
effective damping due to energy transmission between oscillators.
In this case the cascade approach cannot be used. However, when
the excitation is a broadband random process, a technique referred
to as Statistical Energy Analysis can be used [11]. In this
technique the interaction between oscillators is studied in terms
" of time-average power and energy variables. At high frequencies,
where each structural element has many modes with resonances in
each octave band of frequencies, the exact mode shapes and resonance
frequencies are replaced by statistical averages — the averages
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being taken over structures that are generally similar but not
identical. At low frequencies, the exact values for mode shapes
and resonance frequencies are used to calculate the energy-flow

between each pair of oscillators.

When the coupling between oscillators is very large, the
shift in resonance frequencies becomes large. It has been shown
that Statistical Energy Analysis can be used to study the vibra-
tions of a single pair of strongly-coupled oscillators [12].
However, the use of SEA when there are many strongly coupled
oscillators is questionable. Unfortunately, there is no satis-
factory technique for studying strongly coupled oscillators. The
best approach in this case is to redefine the structural components
so that the representative oscillators are no longer strongly

coupled.

Statistical Energy Analysis can be used both when the
coupling is moderately strong and when it is weak. However, a
basic assumption in past uses of SEA has been that the response of
each structural component be described in terms of the resonant
response of each mode of the component. This assumption is

generally not met in track structures.

The length of a typical track segment is sufficiently long
that the vibration of each structural element is best described
in terms of vibrational waves travelling away from the excitation
points at each wheel location. As the waves propagate away from
the excitation points, their amplitude is changed because of energy
dissipation due to damping and because of energy flow between waves
in the different structural elements.

As in the case of normal mode analysis, a classical travel-~
ling-wave analysis cannot be used because the different waves in
the structure are coupled. What must be done in studying the
vibrations of track structures is to extend the chaining procedure
and Statistical Energy Analysis so that they can be used to predict
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the response and interaction of travelling waves in coupled

structures.

Many aspects of the required extensions, which will be
described in the following Sections, represent new work. Therefore,
in developing a complete and reliable prediction model for track
vibration and noise radiation, we will make frequent use of the
field data that we have obtained on three Boston MBTA elevated

structures.

3.2.2 General Formulation of Coupled Oscillator Equations

In general we model the track structure as an assemblage of
beam and plate elements that are infinite and homogeneous along the
track direction (the x-axis). For example, two plate elements,

"a" and "b", may be visualized in cross-section as shown in Fig. 3.6.
In the development of this Section we consider for sake of example
the interaction of only two members vibrating in flexure. The
analysis can be extended to any number of interacting elements

vibrating both in flexure and in-plane.

We shall find it convenient to define for each element a
local coordinate along the cross-sectional length, call it vy.
Mostly, we deal with the space and time Fourier transforms of

response, defined for structure "a" by

1kxx
ua(kx,y,t) z dx e ua(x,y,t) (3.1a)
U (x,y,0) = J at e 10t u_ (x,y,t) (3.1b)
Ua(kx,y,w) = [ dt e_lwt ﬁa(kx,y,t) (3.1c)
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where ua(x,y,t) is the displacement of structure a at a point

X,y at time t, k_ is the wavenumber in the x direction, and w is

x A
the radian frequency. Note that ﬁa, Ua, and Ua are all complex

numbers with real and imaginary parts.

The transform of the response of each structural element
may be decomposed into a sum of eigenfunction amplitudes, i.e.

1]
1e~1 8

(K, ,y,t) U, O at) v Gk 5y) (3.2a)

n=1

ﬁb(kx,y,t) ubn(kx,t) wbn(kx,y) (3.2b)

i
nes1 8

n=1

where the wan(kx,y) are appropriately chosen cross-wise eigen-
functions for structure "a" and wbn(kx,y) are the eigenfunctions
for structure "b". These are to be defined such that the square

of their norm equals the cross-sectional length, i.e.

L,/2 |

Yoo Yam & = L, 6 (3.3a)
~L,/2
L,/2

Yoo Yom &Y = Ly 8., (3.3b)

-Lb/2

where Gmn 1l if m = n and is zero otherwise. In the case of beam
structures (with zero cross-sectional length) wan or wbn is to be

taken to equal to one.

51



The ﬁan's may be termed the modal coordinates of structure

a. They represent the time varying part of the transform of the
structural response at a particular kx' The eigenfunctiﬁns, wan
and wbn s represent the spatial variation in y of the n cross-
wise mode. In general, the eigenfunctions are functions of both

y and kg [13].

Using the orthogonality of the eigenfunctions and the defi-
nition of their norm, the equations of motion can be recast into a
set of coupled ordinary differential equations for the modal

coordinates,
My Yan ¥ Can Yan * Ko Uy - mgl Bn,m Upm = Tanlkyst)
(3.4a)
5 5 + u - Ui = F
mb Ybn * Cbn Ybn Kbn Ybn mgl Bm,n Yam fbn(kx’t)
' (3.4Db)
(n = 1, 2, ... )

where m,» m are the masses per unit length (along x) of structures
nmn 1y n. N 3 3 2 .
a'" and "b"; Can s Cbn are the damping coefficients; Kan ) Kbn

are the stiffness coefficients, and Bn m is the coupling coeffi-
b

cient. All coefficients can be functions of wavenumber, kx.

Equations 3.4 describe a system of coupled oscillators.
This analogy will prove particularly useful when we consider
response calculations, since we can use many of the ideas of
Statistical Energy Analysis.

3.2.3 The Integrated Spectrum
In practice the solution of Eqs. 3.4 can be carried out when
only a few modes participate in the response. The solution is

difficult to find for even simple track structures in the frequency
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range of interest because of the large number of cross-wise modes
contributing to the response. Our approach and the key to the
prediction procedure developed in this report is to describe the
response in terms of the integrated spectrum, which is related to

the total vibratory energy in the structure.

By definition the integrated displacement response spectrum
for a two-dimensional structure, Iu(w), is given by

L. /2 o
y
Iu(w) = dy dx Su(x,y,w) (3.5)

-L /2 -
y ©

where L _ is the width of the structure in the y direction, Su(x,y,w)
is the spectrum of the response, u, at point x,y on the structure.
The spectrum Su(x,y,w) can also be written in terms of the Fourier
transform of the response u(x,y,t) as

Su(x,y,m) = % |U(x,y,w)l2, (3.8)

By expanding the response into its modal coordinates ﬁn and using
the Fourier transform relationships we find

-ikxx .
dkx e U, (kx,w) Vo (kx,y) (3.7)

U (x,y,w) = ;;

1t 1

n=1

-Q0

where ﬁn is the Fourier transform in time of the nth modal coordi-
nate transform ﬁn. Combining Egs. 3.5, 3.6, and 3.7 we find

L o
- Y 3.
I, (@ = 3¢ nzl dk Sun (kysw) (3.8)

- Q0
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where Su is the spectrum of the response of the n-th oscillator,
n
which is given by

- 1 n 2
sun (k ,w) = 5 IUn (k,>w)|° . (3.9)

The Eqs. 3.8 and 3.9 will be used extensively in the
remaining Sections of this report. Use of the integrated spectrum
limits our ability to predict in detail the vibration at different
points on a track strucutre. We will show, however, that the
noise radiation from elevated structures can be adequately defined
in terms of the integrated spectrum. We will also show that a
general prediction procedure based on the integrated spectrum can
be used to investigate the effectiveness of various noise and

vibration control treatments.

3.2.4 Characterization of the Excitation

The analytical model developed in this Section treats the
excitation due to the wheel/rail interaction as a series of point
forces at the wheel/rail contact points. Two mechanisms of force
generation are considered: roapr# due to the random roughness of
the wheel and rail surfaces and impact due to the crossing of rail
joints, and impact due to wheel flats. 8Squeal mechanisms will not
be considered. The forces associated with roar will be taken as
continuously-fluctuating random point forces with the forces
generated by different wheels being uncorrelated. Because the
forces are uncorrelated we can calculate the total integrated
spectrum as a sum of the integrated spectra due to each wheel, i.e.

LW s 1w (3.10)

%
See Section 2.1 for a definition of terms.
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(i)
u
wheel i and the summation is over all wheels. The motion of the

where I is the integrated spectrum due to forces generated by
transit vehicle is important in determining the level of the fluc-
tuating forces under each wheel and the shape of the force spectrum.
However, once the forces have been determined the motion of the
vehicle can be neglected in calculating the integrated spectrum of
response, since the vehicle speed is much less than the phase
velocity of the different cross modes of the track structure. By
ignoring the vehicle motion we eliminate the Doppler shift in the
vibration frequencies. The shift in frequencies is much less than
an octave over most of the frequency range of interest so that it

is not important in our general prediction.

The forces due to impact at rail joints and due to wheel
flats occur as a series of impulsive events with one event occurring
each time a wheel crosses a joint or for each wheel revolution.
However, if we select a sufficiently long averaging time the series
of impulsive forces can be replaced by a number of equivalent
continuously fluctuating forces which have the same spectrum.
Furthermore, if we limit or attention to the integrated spectrum,
we can neglect the distinction between forces that move along with
the wheel and forces that occur at the fixed location of each rail
joint.

In the remaining Sections of this report we will assume that
the integrated spectrum of the rail vibration under each wheel is
known either from measurement or empirical prediction.* With this
assumption we do not need to identify the specific excitation

mechanism.

*®
See Section 2.
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3.2.5 Application of Statistical Energy Analysis

To use Statistical Energy Analysis (SEA) we study the time-
average vibratory power balance for each oscillator in the set
described by Egqs. 3.4. For the nth mode of a particular struc-
ture "a", we balance the power input from external forces,

» with the power dissipated, wan , and the net power trans-

mitted to other modes in structure and to other directly or

b

a
indirectly connected structures, ) W
m b

(in)

+
an an g wan’m (3.11)

The power dissipated and the power transmitted between modes are
then expressed in terms of modal energies,

Wan % %an T, (3.12)

and

wan,m = ¢an,m [Tan - Tm] (3.13)

where Tan and T are the time average energies of the nth mode in

th

structure a and the m mode respectively, ¢ is a modal

an

damping coefficient, and ¢ is a modal coupling coefficient.

an,m

Equations 3.11, 3.12 and 3.13 form a set of linear
algebraic equations which can theoretically be solved for the
modal energy of each mode in terms of the power input from
external sources. It is common practice, however, to
make simplifying assumptions. The validity of the assumptions
has been generally supported by comparison of predicted vibration
levels with data from laboratory experiments and field tests.
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Many past applications of SEA have used assumptions that
are valid only when there are many resonance frequencies in each
narrow band of frequencies, e.g. a high modal density. The
density of cross-mode resonances for elements of a typical
elevated structure is not large. In general, for any given
wavenumber, kx’ the separation between adjacent resonance frequen-
cies is large compared to the damping bandwidth, WNan,d In this
case we can neglect the coupling between modes of the same struc-
ture with little error. Furthermore, in studying the interaction
between the nth mode of structure a and the modes of structure
b we need consider only the interaction with that mode in
structure b whose resonance frequency is closest to the resonance

th mode in structure a. These assumptions

frequency of the n
greatly simplify the power balance equations and allow a straight-

forward solution for the modal energies.

In applying S.E.A. to rail structures we can take advantage
of the fact that the rail is a one-dimensional wave-bearing
structure. Tor each value of wavenumber, kx, the rail has a
ry’ given by the
dispersion relation for freely propagating waves in the rail,

single cross-mode with a resonance frequency, w

w2 = X k“+wi (3.14)

where B, is the bending stiffness of the rail, m, is the mass per
unit length of the rail, and W, is the resonance of the rail on
its resilient fasteners.* The dispersion relation is plotted for

a typical rail in Fig. 3.7.

* .
Interpretation of the meaning of Wy, when the rail is fastened

directly to a wood tie deck will be given in Section 3.3.2.
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If we consider the vibration in a band of frequencies Aw,
the rail will have one cross-mode resonance frequency within Aw
when kx is in the range Ak, and none otherwise, where Ak is

obtained from the dispersion relation as shown in Fig. 3.7.

In studying the interaction of the rail with other compo-
nents of the elevated structure, we need consider only those
cross-modes whose resonance frequencies for values of kx in the
range Akx are in the range Aw. Furthermore, since the resonance
frequencies of the cross-modes are well separated for typical
elevated structure components, we need consider for each value of
k., in the range Akx only a single cross-mode for each component:
the one having a resonance frequency nearest the resonance frequen-
cy of the rail cross-mode. If the frequency band Aw is narrow,
say an octave or less, the interaction between the rail and other
components can be studied in terms of the cross-modes for kX

equal to kr » where from the dispersion relation,

B

I
+
N

ko2 w? o Wl (3.15)

and w is the center frequency of the band Aw.

As an example, we consider the interaction between two struc-
tures - a rail on resilient fasteners and a concrete slab deck. For
each frequency band the time-average power exchange between the rail
and the deck can be given in terms of a difference in modal energies,

W = wn (T - T, (3.16)

where ® is the band center frequency, Tr is the time-average
modal energy of the rail, Td is the time-average energy of that
cross-mode in the deck for kx equal kP which has a resonance
frequency nearest to w, and nr,d signifies the coupling loss
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factor between the rail mode and the deck mode with the nearest
resonance frequency. The power exchange between modes has been
written in terms of a coupling loss factor rather than a coupling
coefficient to agree with the conventionally used notation. Since
we are considering a band of frequencies, Aw, the relationship

between these two factors is simply wn By balancing

:¢ .
r,d r,d
the power transmitted from the rail to the deck, wr a’ with the

-9
power dissipated in the deck due to damping, Wd, we find a
relationship between the modal energies in the deck and in the

rail,

d . ___r,d (3.17)

where Ny is the damping loss factor for the deck. As a final step
we must relate the modal energies to the vibratory velocity levels.
In the general case, the modal energies are functions of frequency,
w, and wavenumber, kx' To find the integrated velocity spectrum
for a particular structural component we use Eqs. 3.8 and 3.9 to
find

L = oL | a 7oL 0 e ,w|? (3.18)
vi® T oy x o 2 %Y ’

where the summation is over all modes of the structure. The
average integrated velocity spectrum over a frequency band, Aw,

is obtained by integrating the spectrum over the band and dividing
' by bandwidth,

—
<
~~
£
N
1]
>
gl

dw Iv(w) (3.19)

Aw
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where Tv(w) signifies the average integrated velocity spectrum.
Using Eq. 3.19 in Eq. 3.18 and rearranging order of integration

we find
0

- L 1 1 a 2
I (w) = L ak, I 55 do 5 |V, (k)] (3.20)
n

— o Aw

If we limit the summation for each value of kX to modes with
resonance frequencies within the band Aw and if we assume the
bandwidth Aw to be large compared to the damping bandwidth w n_ >
the limits of integration over w can be replaced by infinite

limits with only a small error. Eq. 3.20 can then be written

—_ - _l- - 2
I, (w) —Lz dk_ 55 rzl< |vn(kx,t)| > (3.21)

oo

where <|\7n(kx,t)l2>t is the mean-square velocity of the nth

mode,
which is simply related to the modal kinetic energy. If we take
the time average kinetic and potential energies of the resonant
vibration to be equal, the average integrated velocity spectrum for
structure a can be related to the total (kinetic plus potential)

modal energy by

— _ a i.
I, (w) = —— dkX o rzl Tan(kx,w) (3.22)

- 00

where for each value of kX the summation is over all modes with
resonance frequencies in the band Aw.

In accordance with the discussion earlier in this Section
we can limit the summation to one mode. Furthermore, the modal
energy in other structural elements is nonzero only in the range
of wavenumbers Akx as shown in Fig. 3.7. Thus, if the band Aw

is narrow we can write Eq. 3.22 as
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T (w) = a_ _r T, (k5 w) (3.23)

where kr is given by Eq. 3.15.

Use of Eq. 3.23 allows us to use the modal energies
obtained from S.E.A. in calculating the integrated velocity
spectrum for each component of the elevated structure. For the
example cited earlier in this Section we use Eq. 3.23 in Eq. 3.17
to find

(3.24)

where Ld is the width of the deck, m is the mass per unit length
of the rail, and my is the mass per unit length of the deck.
Further applications of S.E.A. and calculations of the loss
factors will be given in the next Section.

3.3 Analysis of the Response of Idealized Rail Structures

In the following Sections, we present analyses of various
idealized structures representative of those commonly appearing
in practice. The basic approach is as outlined in Section 3.2.
All structures are considered to be infinite and homogeneous
along the track direction. Since the response of rails during a
train passage has already been fully discussed, it will be assumed
that the rail vibration is known. Major emphasis will be placed
on predicting the response of those structural elements that con-
tribute most to the acoustic radiation.
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3.3.1 Concrete Deck on Steel Plate Girders

The geometry and nomenclature of this idealized structure
are as shown in Fig. 3.8. It is meant to represent the type of
structure shown in Fig. 3.4. The rails are mounted on resilient
fasteners to a concrete slab deck which is typically 1 ft thick
and 8 to 10 ft wide. The deck is supported by two steel I-beams
consisting of a plate web approximately 1/2 in. thick and steel
flanges. 1In addition to these main elements there are often
vertical stiffeners placed periodically on the I-beam web. Also,
there are usually truss members connecting the two longitudinal
I-beam girders. Often, as indicated in Fig. 3.8 the rails are

mounted directly over the I-beams.

To apply S.E.A. we divide the structure into the following

elements:

1. rail and fasteners (denoted by subscript "r")
2. concrete slab deck (subscript "s")

3. I-beam girders (subscript "g")

4. additional truss members (subscript "t"),

The rail and fasteners are idealized by a Bernoulli~Euler beam on
an elastic foundation, while the slab deck can be modeled as a
Bernoulli-Euler plate. The motions of the I-beam web is modeled
by a Bernoulli-Euler plate.

We must now decide what dynamical interactionsexist among
the above elements. Of greatest importance is the rate of vibra-
tory energy flow from the rails to the deck and girders. The
situation is shown in Fig. 3.9, where Fr is the force amplitude

on the deck due to the rail vibration and VS is the resulting deck

velocity.

The forces under the rail transmit power to the deck and to
the girders. The ratio of the power transmitted to these two
structures is equal to the ratio of the magnitudes of their input
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impedances. The impedance of the deck averaged over bands of
frequency containing several cross-mode resonances is equal to

the line impedance of an infinite plate, [11]

EA L

2V?2 P vw Kg © (3.25a)

s,infl L,s

where Pq is the surface density of the deck material, hg is the
thickness of the deck, Ky = hs//12 is the radius of the gyration

for the deck, and c is the longitudinal wavespeed in the deck

L,s
material. TFor a typical concrete deck one ft thick with P =
150 lbs/ftz, and Sy T 9,800 ft/sec,
bl
. 1b sec (3.25b)
lz_| = 700 Vu T

The frequency average impedance of a typical girder to forces in
line with the plane of the web is given by the impedance of a

semi-infinite plate; i.e., a semi-infinite web plate,

- - - 1b sec
Izul = 'Zu,infl = pgw CIL,gw * 13,500 5t (3.26)
is

where pgw is the surface density of the girder web and Ck,gw
the longitudinal wavespeed in the girder web material, 17,000 ft/sec
for steel. TFor frequencies above 60 Hz the average impedance of
the deck is greater than that of the girder so that power transmitted
to the deck is much greater than that transmitted to the girder.
Hence, the rail can be assumed to be coupled only to the deck. The
dominant path of energy transmission is from the rails to the deck

to the girders.

, The vertical forces acting on the web plate excite vibra-
tory deformations of the web-plate that are in the plane of the
plate; i.e., longitudinal wave motion. On the other hand, moments
acting on the web plate excite deformations that are normal to the
plane of the plate in the form of bending wave motion.
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Normally, in an analysis of noise radiation the in-plane longitu-
dinal vibration is neglect since the acoustic radiation from this
type of vibration is negligible. However, in the present case,
we recognize that in-plane vibration is coupled to the bending
vibration, which does cause significant acoustic radiation, by
the trusses. Therefore, in setting up the SEA equations we
distinguish between longitudinal web motion, denoted by "u", and

bending motion of the web, denoted "w".

With the above preface, the structural interactions may be
diagrammed as in Fig. 3.10. All parameters shown are functions
of wavenumber, kx’ However, as discussed in Section 3.2.5, we
set kx equal to the wavenumber of free bending wave vibration in
the rail, kr’ at the center frequency of the band of frequencies
being studied. In this Report we will study the vibration in
octave bands. Vibration levels may now be computed on the basis
of the interaction shown in Fig. 3.10. We consider first the

high frequency vibration, above the rail/rail fastener resonance,

mr-

The first step in the analysis is to formulate the power
flow relations corresponding to each element and vibration type.

Written in full, these are:

ng Ty + L (Tg - 2T) + L (T, - 2T)

tong g (T, - 2T ) = O (3.27a)
ng T, * Nu.s (T, - TJ) + Nt (T, - T) = o0 (3.27b)
ng Ty ¥ L (T, - TS + Nyt (T, - T = 0 »(3.27¢)
ng Ty * Ny, (T, - 2T ) + New (Tp = 2T) = 0 (3.274d)
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The rail energy, Tr’ is assumed to be known. Factors of two enter
because there are two rails and two girder webs. Because we have
considered the modes in each element to be coupled only to one
mode in the adjacent elements, the coupling loss factors are

symmetric, i.e.
n = n_ . » etc. (3.28)

The truss members couple in-plane motion of the web to
web flexure. In its details, this interaction is very difficult
to formulate. However, the calculation is greatly simplified by
making a few reasonable assumptions. First, we can solve Egs.
3.27(e) and 3.27(d4) for Tu and Tt in terms of TS and Tw, by

neglecting the damping loss factors, n, and Ne in comparison with

the coupling loss factors, nt,u’ nf,w, and nu’s. This gives:
n n
-1
n. (T =T.) =n_ (T - T)(1+ —2= 4+ 15, (3.29a)
w,t "w t Uu,s w s nw,t nt,u
n n
- o _ u,S u,s,-1
ns’u(TS T..) ”u,s(Ts Tw)(l + + ) (3.29b)

Te,w  Tt,u

It will also be assumed that Nyt and nt u are at least as large as
b b
LR Then, from Eqs. 3.29 the error incurred by taking
2
nw,t(Tw - Tt) = nu,s(Tw - T.)) (3.30a)
ns,u(Ts - Tu) I ,s(Ts' Tw) (3.30b)

is no more than a factor of 3, i.e. 5 dB. This margin of error is
considered to be acceptable, since we anticipate the actual error

for rail structures to be small.
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Support for the above assumptions is difficult to quantify.
In general, we do expect the damping loss factors to be small in
rail structures, particularly for the in-plane web vibration. We
also expect the coupling between the slab deck and in-plane motion
of the web to be small because of the difference in impedances.
Therefore, we proceed with some confidence, even though a quanti-
tative estimate of the error introduced by these assumptions
cannot be made.

Substituting Eqs. 3.30 into Egs. 3.27, we have

0 (3.31a)

nSTs + ”r,s(Ts - 2Tr) + (ns,w + ns,u)(Ts- 2Tw)

n T + (nw + nu,s)(Tw - TS) = 0 (3.31b)

The interpretation of Eqs. 3.31 is that the slab and web flexure

are coupled with an augmented coupling loss factor (ns w ng u).
b b

This comes about because the vibration of the truss members
serves to convert the energy of in-plane web motion to web flexure.
The solution of Eqs. 3.31 for the slab and web energies is

2 n

T - r,s T

s 2 (ns w + 1 )2 r
Ng ¥ Mgt ng v, - Bl (3.32a)

s s s nw ns,w ns,u
n +n
T, = S,W S,u T, (3.32b)
+
Ny "s,w * Ns,u

These equations represent our analytical predictions based on known
rail response, which are valid for frequencies above the rail
fastener resonance frequency.
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For frequencies below the rail resonance, the wavenumber
for free bending waves in the rail, given by Eq. 3.15, becomes an
imaginary number, meaning that all the vibration waves decay
rapidly in amplitude as the distance from the excitation point
increases. Analysis for this case is quite difficult, as is
shown in Appendix II. Fortunately, the total radiated acoustic
power in the frequency range below the rail/fastener resonance
frequency makes little contribution to the A-weighted noise level.
Our approach, therefore, will be to limit our analysis to frequen-
cies at or above the rail/fastener resonance frequency. Prediction
in the low frequency range could be based on the work in Appendix
II.

As the final step we must calculate the loss factors. The
damping loss factors can be obtained from available tables on
the damping loss factors of materials and on the basis of the
acoustic radiation losses to be expected. However, for the
coupling loss factors,detailed determinations must be made.

The basic calculations of coupling losses are carried out
in Appendix III for typical configurations and are all based on
wave calculations. Below, we discuss these results as applied to each
loss factor of the particular elevated structure considered in

this Section.

nr‘,s: The coupling loss factor between the rail and slab can be

obtained by considering the power flow from a beam (representing
the rail) connected to an infinite plate through a continuous
elastic layer (the rail fasteners). The result presented in
Appendix III can be immediately adapted to the present case to

‘yield:

y pS

k m l - s
s r (3.33)

2
2 (— -

1+ iVl - s
I rs V1ts

71




where

s = sin 6 = kr/ks
K = Kz
rs 2 D k3
s s
P
b 2 s
kS = w D—
s

and where k_ is the free bending wavenumber of the slab, pg and

DS are the mass density per unit surface area and bending rigidity
(ESIS) of the slab, and kr is the free bending wavenumber of the
rail. Note that in the general case, the fastener stiffness per
unit length of rail, K, , must be modeled by a complex number taking
into account the fastener damping, see Section 2.

N W' The interaction between the slab and I-beam web bending may
I LA

be idealized by two plates forming a rigid right angled T junction.
For the purpose of calculating this coupling loss factor, the

in-plane motions of slab and web can be neglected to obtain

_v
(ks LS)(l - s2) /? - g2

n =
S>W 1P2/2 + w[vsi—SZVKz—Sz + )/l+82 /K2+Sz ] + 2 KZ (3-3'4)

where
s = k._/k
kK = k. /k
w s
- 2
vV o= K DgW/D
p
k” - m2 552
w Dow

and kw is the free bending wavenumber of the girder web, bgw is the
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girder web mass per unit area, and Dgw is the girder web bending

rigidity (ngIgw)'

One must note, in calculating ns’w s the effect of the
vertical web stiffeners (a typical example is shown in Fig. 3.11).
Usually, bending waves transmitted to the web from the slab
propagate in a direction nearly normal to the structural junction.
Thus, the effect of stiffeners is to augment pgw and Dgw by their
mass and bending stiffness. We may think of this added stiffness
and mass density as being uniformly distributed over the whole

web length (along the track). Thus Dgwmust be increased by adding:

Porifs/ A%

stiff
where Potiff 18 the mass of a stiffener per unit length and Axstiff
is the distance between the centerline of adjacent stiffeners.

Also,Dgwnmst be increased by

Detirs/2¥stifs

where Dstiff is the bending rigidity of the stiffener. From the

dimensions shown in Fig. 3.11, these parameters are given by:

Dstirf 7 FBsteer I (3.35)
where
I = % (B ci - bh° + acg)
e = L a#’+nd®
1 2 aH + bd
c, = H - cyo h = ¢y - d
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Ng ot This is the loss factor for the coupling between bending
—_—

waves in the slab and in-plane motion of the I-beam web. To a
first approximation the in-plane motion can be modeled as longi-
tudinal waves in the web propagating normal to the structural

junction. The resulting coupling loss factor is

p__.C 4
n = _BYW L,gw l-s (3.38)
S»u 2pg 0 Lg % 4, A 2 , A2 .
(/1-s* + T V1ts®)” + 3 (1-s2)
where
» - Co.gv Pew
3
ke Ds
Cy ,agw is the longitudinal wave speed in the steel girder web and
I

other parameters are defined earlier.

This concludes the analysis of the concrete deck on steel
plate girders. A typical application of the analysis will be given
in Section 4.

3.3.2 Open Tie Deck on Steel Plate Girders

The geometry and nomenclature associated with this type of
structure are shown in Fig. 3.12. The structure consists of rails
directly mounted on an open deck of wooden ties which are in turn
supported by two steel plate I-beam girders. As in the previous
structure the girder webs may have vertical stiffeners periodically
placed along their length. Furthermore the rails are typically

placed almost directly above the girder webs.

The compressional stiffness offered by the ties to relative
motion of rail and I-beam is modeled by a continuous elastic
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layer, with stiffness per unit rail length Kt' In many practical
situations the rails are not rigidly bolted to the ties, so that
estimation of Kt is problematical. This is because the static
loading of the rails by the mass of the cars can cause the rail to
deflect upward at some points and break contact with the tie deck.
At these locations, the rail is essentially unsupported. Therefore,
the value of Kt to which we here refer is the spatial average of

the stiffness over the whole train length, including those locations
where rail and ties are uncoupled. The rational calculation of this
average stiffness is very difficult, and one must therefore often
rely on intuitive reasoning. This will be done in Section 4, where

we apply the analysis to a specific case.

The bending motion of the ties is modeled by Bernoulli-
Euler beams. However, to preserve our picture of an assemblage of
homogeneous, infinite structural elements, we may think of the
tie deck as an orthotropic grillage with vanishingly small bending
rigidity along the track direction. Referring to Fig. 3.12, the
mass density per unit surface area, Pg> and the bending rigidity

along the y axis, Dd’ given by

E 3
p = p hb _ wood bh
d wood % Dd * Ak 17 (3.37)

3 '
where Puooq and Ei00q are the density and Young's modulus of

wood.

Finally, the bending motion of the girder web is modeled
by a Bernoulli-Euler plate and its in-plane deformation is

idealized as longitudinal wave motion.

As the result of the above idealizations, the whole

structure can be divided into the following elements:

1. rails on the compressional stiffness of ties (denoted

by subscript "r")
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2. flexure of tie deck (subscript "t")
3. I-beam girders — girder web properties (subscript "gw")
. — web flexure (subscript "w")

— in-plane motion (subscript "u")

4. additional structural members (subscript "o").

Item 4 may include, for example, the longitudinal and bending
motion of the trusses, columns or any other element tending to
couple flexural and in-plane motion of the webs.

Now consider the nature of coupling between the rail and the
other structural elements. Suppose that F is the force exerted
on the ties by the rail, as shown in cross-section in Fig. 3.13.

The ties act as point driven beams with impedance, Z_t

z, = P/0_ = 20D, ki (1 - §)/w (3.38)

where

=
1t

(mt/Dt)l’” /e

m, is the mass density per unit length of a tie, and Dt is its
bending rigidity. Similarly, the impedance for in-plane motion

of the I-beam web to a vertical force is
(3.39)

where ¢, is the longitudinal wave speed in steel, and p w is the

mass per’unit area of girder web. With wooden ties 8" square, a 3/8"
thick steel web, and typical values of mass densities and elastic
moduli, one finds that |Zt| < lZul for frequencies up to approxi-
mately 5000 Hz. Hence, in considering the power flow from rail

to ties and I-beams, we can neglect the coupling between rail and
ties. This is the opposite conclusion to that reached for the
concrete deck on steel plate girders. The resulting "interaction

diagram" is as shown in Fig. 3.14.
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TIE DECK

FIG. 3.13 FORCE AND VELOCITY CONVENTIONS FOR CALCULATIONS
OF TIE DECK AND GIRDER WEB IMPEDANCES
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FIG.3.14 INTERACTION DIAGRAM FOR OPEN
TIE DECK ON STEEL PLATE GIRDER STRUCTURE
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The behavior of the secondary structural elements is very
difficult to calculate. However, we may assume that Ng» and n,
are small compared with nu ° and no,w and that nu,o and no’w are

9
no smaller than n_ .. Then, the interaction among the "u", "o"
9
and "w" systems may be modeled by the short circuited path shown

as the dotted line in Fig. 3.14. Finally, the assumptions that

nu,o . no,w > nw,t imply that nu,w < nw,t s so that one incurs
little error by taking
T =z T (3.40)

With this result, the steady state power flow relations can be
expressed solely in terms of the energies of the rail, ties, and

I-beam webs,

(nw + nu)Tw + nu,r(Tw - Tr) + nw,t(T -T,) = 0 (3.41a)

n, T

t Tt + ﬂw’t (Tt- 2Tw) = 0 (3.41b)

Egs. 3.41 can be solved to find

n
T = u,r T (3.42a)
W Ne Nyt r
(n + nu) + nu r + n_;.._.?_
> t Mw,t
2n
T o= —t g (3.42b)
t n. +n W
t w,t

The remaining step is to calculate the two loss factors
n and Nyt Results from Appendix III are as follows:
3
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n : From Appendix III we find the coupling loss factor between
r,u

bending of the rail and in-plane motion of the I-beam, to be

mr wr 3 wr
n = = (=) — (3.43)
r,u 2 w pgwcl,gw
where 2 Kt
®n T n
r

It is to be noted that LI decreases very rapidly with frequency.
?

Eﬂ4_: This is the loss factor between bending waves in the tie
deck and bending of the I-beam web. The situation may be
idealized as a rigid right angled T junction between a grillage
(the tie deck) and a Bernoulli-Euler plate (the I-beam web). By
the very nature of the tie deck, only waves normal to the struc-
tural junction may propagate on it. Accounting for this fact,
assuming incident waves on the tie deck and calculating the
resulting power flow to the web, one recovers the result given in

Appendix III for normal incidence (s = 0):

Ky
: k, L
gt t t (3.44)
%wz + 2Kk p+ 2 k2
where K = kw/kt
_ 2
Yy = K Dgw/Dt
_ 1/4
k, = (Dgw/Dgw) /o
k, = (o /D) /&
t t' Yt
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kw and kt are the wavenumbers of free bending waves on the web
and the ties, respectively. The coupling loss factor given by
Eq. 3.44 is typically quite small. Since the damping losses of
wooden ties is fairly large, the average energy of ties will
generally be miich less than that of the I-beam webs.

3.3.3 Open Tie Deck on Open Web Steel Girders

As in the previous example, the rails are supported by an
open tie deck. Here, however, the girders have open webs, as
shown in Fig. 3.15. The girders consist of a horizontal flange,
supporting the tie deck, connected to a lower flange by vertical
columns. The girder is stiffened with respect to shear deflections
by diagonally placed truss members. Clearly, this assemblage is
not homogeneous along the track, however, one can obtain crude
but serviceable estimates by modeling it by an "equivalent"
continuum, as will be discussed below.

We will divide the structure into the following elements:

1. rail on the compressional stiffness of the ties
(denoted by subscript "r")
2. flexure of the tie deck (subscript "t")
3. Girder structural members — local z component of
vibration ("w")
- local y component of
vibration ('"u").

We characterize the open web girder structures by the average of
their vibratory energy over all their structural members, distin-
guishing only between motions in the y-direction and in the z~-

" direction, as shown in Fig. 3.15. The manner in which these
elements interact must now be determined. Since most ties are
supported by the upper flange at points where vertical columns in
the web trusses are not present, we may assume that the force impe-
dance of the flange is typically much less than that of the ties.
Thus, the energy flow from rail to girder may be neglected in
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FIG.3.15 IDEALIZED MODEL OF ELEVATED STRUCTURE WITH
WOOD TIE DECK ON OPEN-WEB STEEL GIRDERS
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comparison with the energy flow directly from the rail to the tie
deck. Furthermore, similar to what has been done in the preceding
examples, various mechanisms are postulated which account for a
conversion of the energy of y-component girder vibration to energy
of the z-component. We model these mechanisms by a direct
coupling between system elements "u" and "w'", although in fact

the coupling may be through other structural elements.

On the basis of the above remarks, the interaction scheme
is as shown in Fig. 3.16. Proceeding as before, we assume that
N, u is sufficiently large that Tu = Tw. Also, note at the outset
that since the tie deck and horizontal flange are connected with
the vertical and diagonal girder members only at discrete points,
the energy flow from the ties to the z-component of vibration of
the girders is negligible. Therefore, Ne,w is neglected in our
analysis. The resulting energy flow relations corresponding to

each system element are:

T, +n (T, - 2Tr) + nt,u(Tt - Tw) = 0 (3.45a)

+ - =
(nw + nu) Tw \ nt,u(Tw Tt) 0 (3.45b)

The resulting solutions for Tt and Tw are

- r,.t
T, = RO T, (3.46a)
n. + n . + ’3 W . u
t T w Yy nt,u
n
T = t,u T, (3.46b)
+
nw nu * nt,u
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Eqs. 3.46 are for frequencies at or above the rail/tie

resonance, mr, where

and Kt is the effective stiffness of the ties (see Section 4).
We do not consider the low frequency regime in detail, but proceed

to determine the coupling loss factors appearing in Egs. 3.U46.

Eﬁii: As in the previously discussed example, Section 3.3.2, the
tie deck can be modeled as an orthotropic grillage with zero
bending rigidity in the track direction. The rail is first
coupled to the compressional stiffness of the ties and then to
the tie flexure. This is the same situation as is considered in
Appendix III, except that only waves normal to the rail-tie
junection can propagate in the ties. Thus, Npt is the result
found in Appendix III, evaluated for normal wave propagation

(s = 0):

2
) (ZOtKrt)/(ktmr)
nr,t = " N (3.47)
Kt 2(1 - Krt)
where
2
< N T W
rt 3
2 Dt kt
P
k, = (1—35)1/“/5
t

and where Py and Dt are the mass per unit area of the tie deck and
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bending rigidity of the tie-grillage system and W, is the resonance

frequency of the rail on the compressional stiffness of the ties.

EE;!' This is the coupling loss factor for bending waves in the
Tie deck and the y-component of girder vibration. Here we face

the difficulty that the girder structure is not homogeneous in

the track direction. However, one notes that the most

significant contribution to the spatially averaged energy of
response comes from the low wavenumber components of vibration.
That is, we need consider only the coupling between those tie
bending wave motions and girder vertical vibrations which are very
slowly varying along the track direction. Hence one may crudely
approximate nt,u by calculating the power transmitted by tie-deck
bending waves (at normal incidence) to longitudinal waves in the
vertical columns and diagonal truss members of the girder. This
procedure is tantamount to replacing the open web by a thin

plate having a mass density per unit area equal to the average

mass density of the columns and diagonal elements. A typical open-
web girder is shown in Fig. 3.17. The web structure is periodically
repeated, the basic pattern being the "bay" indicated by the dashed
lines in the figure. The mass surface density of the plate equiva-

lent to the open web can be estimated as

1

p - —
gw ngLb

(M2 + Mu) (3.48)

where M2 and Mu are the masses of the column and truss members,
respectively, and Lw and Lb are the height of the web and the

" length of a bay.

To conclude, we consider the coupling loss factor for
bending waves in a grillage connected through a right angled
junction to a plate with mass density given by Eq. 3.48 under-
going in-plane motion. Since only waves normal to the junction
can propagate in the tie deck, "¢, u is the result from Appendix III,
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evaluated at normal incidence:

p c 2
. Pgw Stgu A2 A2 -1
nt,u 2 p. w L [(1 + 4) + 16 ] (3.49)
t t
where
- Czl%w pgw w
k‘t Dt
Pt .1/4
kt = (=) Yo
D¢

and Cy,gw is the longitudinal wave speed in steel, L_t is the length
b

of ties, and kt is the free-bending wavenumber of the ties.

Examples of the use of the equations presented in this
Section will be given in Section U.
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3.4 Analysis of the Acoustic Radiation

During the passage of a train on an elevated structure,
acoustical power is radiated from elements of the structure due
to their vibration. This radiated power, which we call elevated
structure noise, adds to the power radiated by the wheels, rails,
and other vehicle surfaces so that the total wayside noise when
the train is on an elevated structure is greater than when the

same train is on at-grade tie and ballast track.

As a train passes by, vibrational energy due to wheel/rail
interactions is transmitted to the structure at each wheel/rail
contact point. As this energy propagates away from the contact
points and distributes itself throughout the structure, the
vibration amplitudes become smaller due to the spreading of the
energy within the structure and due to damping. However, as the
amplitudes diminish, the net surface area participating in the
vibration grows, providing a greater radiating area. Since the
radiated acoustic power is proportional to the product of area
and vibration amplitude, prediction of the noise radiation requires
a detailed knowledge of both the radiative properties of each
element of the elevated structure and the distribution of vibration

throughout the structure.

3.4.1 Basic Approach

The acoustic power radiated by a vibrating surface that is
infinite in one dimension can be expréssed in terms of the radiation

efficiency by

W (w) = p_c crad(w) Iv(w) PPad (3.50)

rad o o

where wrad(w) Aw is the total power radiated by the surface in the
narrow band of frequencies Auw, P66 is the acoustic wave impedance,
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o} is the radiation efficiency, Iv(w) is the integrated

rad
velocity spectrum, and Prad is the cross-sectional length of the
structure from which acoustic power can be radiated. The units
of the integrated spectrum are L3/T where L is a unit of length

and T is a unit of time. The radiation efficiency is dimensionless.

If we define power level, Lw’ and integrated velocity

spectrum level, L s, according to
P I g
v

wrad(w)Aw . .
L, ° 10 log10 10_12 with wrad(w) Aw in (3.51)
watts
and
Iv(w) Aw
L = 10 log — with I_(w) Aw (3.52)
= 10 5.5 x 10710 Vo,
in meters /sec
then Eq. 3.51 becomes
L, = LIV + 10 log10 crad(w) + 10 loglO Prad (3.53)
where P is in meters. For the purposes of this report the

rad
bandwidth Aw is taken to be an octave and the radiation frequency

will be evaluated at the band center frequency. Variations of the
radiation efficiency within an octave band are not large enough to

be of concern.

The reference quantities in Eqs. 3.51 and 3.52 correspond
to international standards, ISO TC 43/SC 2/WG2. However, we should
point out that the integrated spectrum is unique to this report.
Therefore, we have used the IS0 standard for velocity, 5 x 10—8 m/sec,
with an area of 1 meter squared to derive a reference for the
integrated spectrum.

The objective of this report is to develop methods to

predict and control elevated structure noise. This objective is
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carried out in terms of the total radiated power, Lw » in
frequency bands relevant to annoyance. Of course, users of the
prediction methods are also interested in predicting the sound
pressure levels (or A-weighted noise levels) at various distances
from the track. This variation is discussed below.

As part of our earlier work [1] a model was developed for
predicting the noise level from trains on at-grade track in terms
of levels at a distance of fifty feet from the track centerline.
The model represented the train as a series of point sources with
dipole directivity located at each truck. Data we have taken
confirms this model for predicting noise from wheels, rails, and
other vehicle surfaces. However, noise radiated from elements of
the elevated structure is not concentrated at and near the vehicle
trucks but is distributed more uniformly. If we restrict our
attention to predicting noise levels at a distance of 50 ft or
more from the track centerline, then the structure can be modeled
as a line source — the length of the line being equal to the length
of the train. The elements of the line source are taken to have

uniform radiation in all directions, i.e. non-directional sources.

The models used for elevated structure noise and wheel/rail
noise are similar but not identical. However, the elevated
structure noise model can also be used to predict the maximum
wheel/rail noise during a train pass-by at distances equal to or
greater than 50 ft from the train. The maximum sound pressure

level, Lp » 1s given by [14]
L = L - 20 log D + 10 log {22 arc tan —= } (3.54)
w 10 10 L 2D

where D is the distance in meters from the measurement point to
the track centerline and L is the train length in meters.
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3.4.2 Radiation From Simple Elements

We model elevated structures as a collection of plates and
beams. Therefore, an initial step in the development of a
prediction model is to review the radiation from these simple

structural elements.

Plates

The radiation efficiency of plates that are larger than
1/3 of an acoustic wavelength is essentially one at frequencies
above their critical frequency. The critical frequency is
defined as the frequency at which waves on the plate become
supersonic,* or equivalently, the frequency at which the wave-
number of flexural waves in the plate equals the acoustic wave-

number. This frequency is given by

S
o 7 B (3.55)

where fc is the critical frequency in Hz, cg is the speed of sound,
B is the bending stiffness, and Pq is the density per unit area.

For steel or aluminum plates

fc = 500/h (3.56)

where h is the plate thickness in inches.

®
In a dispersive system, such as a plate, the speed of propagating
waves depends on the frequency.
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At frequencies below the critical frequency the radiation
laws become considerably more complicated and depend upon the
details of the plate boundary conditions, baffling, and the
location of stiffeners. Infinite homogeneous plates radiate no
acoustic energy below the critical frequency because the spatial
Fourier transform of the plate velocity has all its energy at a
wavenumber greater than the acoustic wavenumber, ko. However, when
the plate is finite the spatial transform of the velocity does have
energy at wavenumbers less than k,. The details of the radiation
depend upon the parameters mentioned above and can be found
mathematically. For sake of discussion, however, we will base our

discussion on simpler physical models [151].

Simply supported baffled plate

Consider the simply supported baffled plate of Fig. 3.18 ,
vibrating at frequencies below the critical frequency in a typical
modal pattern. Each of the cells creates motion of the air
(volume velocity). However, for cells near the center of the plate,
the air sloshes back and forth from cell to cell, radiating no net
acoustical energy. At the edge of the plate the sloshing of
volume velocity from the cells is not cancelled, and noise is
radiated quite efficiently. The radiation efficiency for this

"edge mode" radiation is given by*

P A

- __DP
0 ad AT g, (£/£) f<f (3.57)

where P is the perimeter of the plate, A is its area, Ap is the

"wavelength of flexural waves at critical frequency,

co 4“2 B 1/4
A = ra = - (3.58)
p c fc Py

x
‘with the limitation that the plate perimeter is greater than an
acoustic wavelength. This is generally true for the structures

of interest in this report. 95
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VOLUME VELOCITY AT THE EDGE
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and the function g, is plotted in Fig. 3.19.

Baffled plates with beam stiffeners

Stiffening or ribbing the plates alters the simple mode
shapes of Fig. 3.18 and increases the radiation by causing the
volume velocity near the stiffeners not to cancel out. Although
this problem has not been solved exactly, a good approximation for
the radiation from such structures has been obtained by consider-
ing a flexural wave incident upon an infinite beam coupled to an
infinite plate [15]. The resulting radiation efficiency is given

by

P A

Orag ° "7?2 g4 (/£ ) f < f (3.59)

where g3 is given in Fig. 3.19, P is the total perimeter of all
subpanels formed by the stiffeners, and A is the plate area.

Baffling effects

The baffling at the edges of a plate plays an important role
in its radiation below the critical frequency. If the baffling is
removed the previously uncancelled volume velocity along the edges
of the plates is now cancelled, or short circuited, since air can
slosh around the edge from one side of the plate to the other.
Radiation from the unbaffled edge will be considerably less than
the baffled edge due to this short circuiting effect. The radiation
from the unbaffled edges of plates vibrating below the critical
frequency has not been given a great deal of attention in the
literature. However, the radiation from these edges is dipole in

. nature and radiates less efficiently by a factor of (h/Ao)2 than
the baffled edge, which is monopole in nature. The parameter h
is the plate thickness and Ao is the acoustic wavelength.

When the edges are baffled by a wedge, as shown in Fig. 3.20
the radiation can be greater or less than the planar baffle case
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FIG.3.20 VIBRATING PLATE WITH AWEDGED BAFFLE

FIG. 3.21 VIBRATING PLATE WITH A FINITE BAFFLE
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(a = 0). The radiation impedance as seen by the radiating edge
strip is increased (or decreased if o < 0) over the case when

1 where the angle a is in

a = 0 by an amount given by (1 - %)-
radians, because the same volume velocity is confined to a
smaller (or larger) angle. This effect will become important in
predicting the radiation from steel girder I-beams, since the

flanges provide a baffle for the web edges.

When a wedged baffle is finite, as shown in Fig. 3.21, we
can approximate the effect by considering the high and low
frequency limits. At high frequencies, where kO a > 1, and a
is one-half the baffle width, the effects discussed in the previous
paragraphs apply, since the baffle is many wavelengths long. At
low frequencies, where kO a << 1, the baffle is much smaller than
an acoustic wavelength, so the wedge effect previously discussed
is somewhat short circuited due to air sloshing around the baffle
and volume velocity cancellation. The radiation from a baffled
edge when kO a is less than one can be modeled as a line dipole
source, with the radiation efficiency reduced by a factor of

2
(kO a)“.

Beams

From an acoustical point of view we define a beam as a
structure whose length is much greater than either transverse
direction and whose cross-section does not deform. When these
criteria are met, a structure of arbitrary cross-section can be
modeled as a circular cylinder to calculate the acoustical radia-
tion with reasonable accuracy. The equivalent diameter of the
cylinder can be obtained either by rough approximation using the
larger of the transverse dimensions or by fitting measured
radiated efficiency to theoretical prediction of cylinder radia-

tion efficiency.

At frequencies above the critical frequency where the
bending wavespeed is greater than the speed of sound, the radiation
efficiency of the beam can be represented by that of a cylinder
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vibrating uniformly along its length.

The radiation efficiency of a freely suspended
cylinder of radius a is given in Eq. 2.25. When
ko a << 1, the cylinder radiates as a line dipole source, or
vibrating wire, and has a radiation efficiency given by the
asymptotic limit

Q
R
N

rad (ko a) =

where P is the cylinder perimeter.

At high frequencies where ko @ >> 1, the radiation effiency

tends to unity,

Grad =~ ] (3.61)

3.4.3 Application to Elements of an Elevated Structure

To apply the results presented in Section 3.4.2 to elements
of an elevated structure, we must represent the elements by
idealized models. The modeling is described in the following
Sections and supported where necessary by comparisons of prediction
with data from field measurements.

Ties

Tie are rectangular solids, generally made of wood, with
dimensions that are typically 8 in. x 8 in. x 8 ft long. In the
- audible frequency range, ties conform to the definition of beams
stated in Section 3.4.2. Since the critical frequency of a tie
is approximately 60 Hz, the radiation efficiency given by Egs.
3.60 and 3.61 will hold. The efficiency will increase with the
third power of frequency. The diameter of the equivalent
radiating cylinder is taken to be the tie height, 8 in. Tie
radiation efficiency is plotted in Fig. 3.22.
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Deck slabs

Large concrete slabs have come into common usage in newer
elevated structures. These slabs extend the length of the struc-
ture span and are typically 9 to 12 in. thick. Since the critical
frequency of a 9 in. concrete slab is 90 Hz, the radiation
efficiency can be taken to be unity for all of the bands of

interest in calculating radiated noise.

Og1ap - 1 (3.62)

Steel plate girders

Steel plate girders are commonly used to support elevated
structures. However, due to their large surface area and low
damping they are significant noise radiators. We model these

structural elements by baffled plates.

The dimensions of typical steel plate girders in a recently
designed structure are shown in Fig. 3.23 . The critical
frequency of the web is calculated to be 800 Hz. Thus, the
radiation efficiency in octave bands centered at 1000 Hz and above
is approximately one. At lower frequencies the radiation is due
to edge radiation at the top and bottom flanges and at vertical
stiffeners. The radiation efficiency is the sum of three factors.
The first factor is radiation from the vertical stiffeners and is
given by Eq. 3.59 with the perimeter P set to equal twice the
stiffener length and A set to be the area of the subpanel formed
by the stiffeners and flanges. The second factor is radiation
from the upper flange edge and, due to baffling by the concrete
deck, is equal to twice the radiation efficiency given by Eq. 3.57
with the ratio of P/A equal to the depth of the web, L . The
third term is due to radiation from the lower flange edge. However,
the radiation from this edge becomes short circuited at low
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FIG. 3.23 TYPICAL STEEL PLATE GIRDER DIMENSIONS
FOR A NEW STRUCTURE
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frequencies, below 200 Hz for the dimensions given, due to air
sloshing around the flange. Therefore, as a general procedure

we set the third term equal to zero for frequencies below the
frequency at which k, a equals one. For higher frequencies we
treat the lower range as an infinite baffle so that the third
term can be set to be equal to the second term. The transition
from the lower frequency region to the higher frequency region

is assumed to take place over an octave centered at the frequency

where ko a=1.

Due to the importance of noise radiation from steel girders,
we have collected extensive field data with which to check the
validity of the noise radiation prediction. In one series of
measurements accelerometers were placed at seven points along a
140 ft span of a steel girder. The time histories of the vibra-
tion levels in octave bands were nearly the same for each acceler-
ometer. As would be expected the only difference was a shift in
time corresponding to the distance between measurement points
divided by train speed. In the same series of measurements
microphones were located five feet from the web at three points
along the span and at a point 50 ft from the track centerline.

The web radiation efficiency can be inferred from these measure-
ments in two ways. Below 1000 Hz the time history of the octave
band web vibration level has the same slope as the time history of
the sound pressure level five feet from the web. This is shown
in Fig. 3.24. The sudden jump in vibration and sound pressure
levels occurs when the train passes from at-grade track onto the
elevated structure. We infer from this data that the sound
radiation measured five feet from the web is due to web vibration.
- Calculations of radiation efficiency are compared with prediction
in Fig. 3.25. The comparison shows reasonably good agreement.
The differences between calculated values and Prediction are
believed to be due to errors in relating acoustic power levels to

measured sound pressure levels five feet from the web.
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The radiation efficiency of the girder webs can also be
inferred from the measurements 50 ft from the track in those
frequency bands where the total noise radiation is dominated by
web radiation. It is shown in Fig. 3.24 that when the train
passes from at-grade track to the elevated structure, the sound
pressure level at 50 ft increases suddenly in all frequency bands
below 1000 Hz. This implies that elevated structure noise radia-
tion dominates the overall noise radiation in these bands. Since
the web vibration levels are much greater than level of the deck,
we assume the elevated structure noise is from the webs. There-
fore, the radiation efficiency of the girder webs was calculated
from the 50 ft sound pressure levels and web vibration levels by
summing the radiation from the entire length of the structure and
assuming that both sides of each girder radiate equally into a
hemispherical space with no directivity. The results of these
calculations are also plotted in Fig. 3.25 . The agreement

between the calculated values and the prediction is good.

The radiation efficiency of steel plate girders on older
elevated structures, with an open deck of wood ties, is reduced at
low frequencies because the open deck does not serve as a baffle.
Dimensions of a typical. girder are shown in Fig. 3.26. The
critical frequency for the web is found from Eq. 3.56 to be
1333 Hz. The radiation efficiency above this frequency is
predicted to be one.

At frequencies below the critical frequency the radiation
is from top and bottom edges of the web and from any web stiffeners.
However, because of short-circuiting around the flanges, the
radiation from the upper and lower edges 1is greatly reduced at
low frequencies. The transition frequency, above which the
flanges which can be treated as being infinite baffles, is found, by
setting kO a = 1,to be equal to 360 Hz.

Two terms contribute with approximately the same weight to
the radiation efficiency in the frequency range 360 to 1000 Hz.
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The first is due to radiation from stiffeners and is given by

Eq. 3.59 with the perimeter set to equal twice the length of

one stiffener and the area A set to be the area of a subpanel
formed by the stiffeners and flanges. The second term is due to
the radiation from upper and lower edges of the girder web. Due
to baffling by the flanges this term is twice the radiation
efficiency given by Eq. 3.57 with the ratio of P/A equal to twice
the depth of the web, Lw.

Below 360 Hz the second term must be multiplied by(ft/f)z,
where ft is the transition frequency 360 Hz and f is the frequency

under consideration.

Predicted values for the radiation efficiency are shown in
Fig. 3.27. Also shown are values inferred from field data. The
values compare well considering the difficulty in using an acoustic

measurement 5 ft from the web as a measure of radiated power.

open web girders

Open web girders are elements in which the web and flanges
are fabricated from beams of various cross-sections. This type of
girder is found only in very old elevated structures. To calculate
the radiation efficiency of these girders, we model them as an
array of beam elements. Then, the radiation efficiency is given
by Eqs. 3.60 and 3.61 with 2a equal to the maximum cross-section
width of a typical element.
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4. COMPARISON OF PREDICTION WITH DATA

In this Section we proceed to compare the theoretical
predictions developed in earlier Sections with data from field
measurements. Three types of elevated structure will be
considered: 1) a structure with steel plate girders, a concrete
deck, and direct fixation resilient rail fasteners; 2) a structure
with steel plate girders supporting an open deck of wood ties with
direct rail fastening; and 3) a structure with open web steel
girders supporting an open deck of wood ties with direct rail
fastening. Structures representative of these three types exist
on the Boston MBTA and are shown in Figs. 3.2, 3.3 and 3.4.

4.1 Data Collection and Reduction

Data on elevated structure noise that have been reported in
the literature are limited by and large to measurements of the
maximum noise level during a train pass-by at a fixed distance
from the track. In a few studies data are also given for the
maximum vibration levels at two or three points on the structure
[7, 16]. Although these reported data allow one to gain a
general understanding of elevated structure noise, they do not
make it possible to verify the prediction model developed in
this report. To do this we have carried out an extensive program

of field measurements.

Instrumentation for the measurements is shown in Figs. 4.1,
4.2, and 4.3. Eight calibrated accelerometer channels and four
acoustic channels were recorded simultaneously on a li-channel
wide-band FM tape recorder. For each set of measurement points,
at least 5 train pass-bys were recorded to determine the repeata-
bility of the measured levels. Train position and speed information
was also recorded on the data tape using a photocell and reflector.
The photocell beam was directed across the track at a height of 3
inches above the rail head, so that the train wheels would
interrupt the beam as they passed by. The train speed was obtained
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DATA COLLECTION

1 Clock
18" . 50' . s ‘
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> 1 ! ‘-LJ
4 Microphones —m—quomd Level Meters Output T
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Oscilloscope
DATA ANALYSIS
4 Sound Level Meters DC Level
Tape Recorder with Octave Band Filter Sets| Output 1Char't Recorder

ACCELEROMETERS: 8 Bruel & Kjaer Model 4333 and 43uy
MICROPHONES: U4 General Radio 1962-9801

PREAMPLIFIERS: 8 Ithaco Model 125L and 1u43L

AMPLIFIERS: 4 Ithaca Model 451 and 4 Dana Model #2820

SOUND LEVEL METERS: U4 General Radio 1933

TAPE RECORDER: Honeywell 14 Channel 5600, IM wideband at 15 ips
OSCILLOSCOPE: Tektronix 5103N storage scope

CLOCK: Systron-Donner 8350

PHOTOCELLS: Photoswitch 42RL1

CHART RECORDER: Gulton Industries Model uuu

FIG. 4.1 INSTRUMENTATION USED TO COLLECT AND
ANALYZE NOISE AND VIBRATION DATA
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FIG, 4.2 INSTRUMENTATION SET-UP ON THE
ANDERSON BRIDGE OF THE




Accelerometers on the
Girder-Web

Microphones near the
Girder-Web and the
Rail Head

FIG. 4.3 INSTRUMENTATION SET-UP ON THE
GREEN STREET STRUCTURE OF THE MBTA
ORANGE LINE
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from the measured time interval between the passage of two wheels

and the distance between the wheels.®

The overall accuracy of the measurement system was + 1/2 dB.
Frequency response was flat within + 2 dB from 1 Hz to 15,000 Hz
on the accelerometer channels and 20 Hz to 15,000 Hz on the acoustic
channels. Accelerometers were fastened to the structure using
mounting studs and epoxy to insure a good bond between the accelero-
meter and the measurement point. A windscreen was used on each

microphone.

The recorded data were analyzed in our laboratory using
conventional filters and level recorders. Since the recorded noise
and vibration signals were random transient events, a single
frequency spectrum or a single time history is not sufficient to
present the data from a complete train pass-by. As a compromise,
we have obtained strip chart recordings of the time histories of
the octave band noise and vibration levels. The readings on the
strip chart recordings correspond closely to the reading that would
be found with a Precision Sound Level Meter with fast meter
response. Examples of the recorded time histories are shown in
Figs. 4.4 and 4.5. Note that the vibration levels of the rail
show the passage of each wheel pair by the measurement point. The
noise level 3 ft from the rail also shows the passage of each
wheel pair, suggesting that the wheels and the rail near the wheel/
rail contact point are the sources of noise at this point.
Vibration levels at points on the deck of the structure and on the
steel girders show a typical crescendo-decrescendo time history.
The individual wheel and trucks do not stand out.

Further data processing is required to find the integrated
spectrum. Although the integrated spectrum is defined as an

integration over the spatial extent of the structural component,

£
We used the distance between leading wheels on the two trucks
of a single car.
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we assume that it is equivalently equal to the spectrum integrated
in time during a train pass-by. The accuracy of this assumption
depends on the uniformity of the structure along the track. It

is expected to be quite good when continuously welded rail is

used on structures with long spans. Less accuracy is expected

for older structures where jointed rail is used and the spans are

short.

Many measurements were taken to verify the use of a single
time history in computing the integrated spectrum. In one set of
measurements seven accelerometers were placed along the span on
the web of a steel girder structure with a concrete deck and
continuously-welded rail. The time histories of the octave band
vibration levels for five pass-bys were nearly the same although
displaced slightly in time to account for the train passage. The
picture of a stationary vibration pattern convected along with the
train appears to be valid. It follows, therefore, that an inte-
gration of the time history at a single point is equivalent to an

integration in space along the span of the structure.

Span-wise measurements were also carried out on the web of
an elevated structure with steel girders supporting an open wood
tie deck with jointed rail. As for the first structure that was
studied, the time histories of the vibration levels at the differ-
ent points are nearly the same and show a vibration pattern that
is convected along with the train.

The prediction model developed in earlier Sections gives
the total vibrational energy levels in octave bands for each
element of the structure. To obtain these energy levels from the
measured data we use the relationship that the time-average
kinetic energy equals the time-average potential energy in
resonant vibration. Thus, the total energy in a given band of
frequencies, E, can be related to the mass per unit length of
structure, m, and the integrated velocity spectrum, Iv(w),
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E = mI (w) Aw (4.1)
v

where Aw is the frequency bandwidth. For convenience in presenting
the data we define a normalized integrated spectrum level, LN R
such that n

L I () Aw
L. = 10 log,. = - (4.2)
N, 10 L 5.5 x 107%°

where Lt is the train length in meters and Iv(w) Aw is in meter3/
sec2. Note that for a long train the normalized integrated
spectrum level is simply the average velocity level during the
pass-by. If we divide the total energy by the train length, then

the energy density level can be written as

LEl = LN + 10 loglO m - 26 dB (4.3)
v
where
1 E
L = 10 log,, =— —= (4.14)
Ez 10 Lt 10 12

and E is in joules, Lt is in meters, and m is in kilograms per meter.

In reducing the vibration and acoustic data, we have used
the following procedure. The strip chart recordings of the time
histories of the octave band acceleration levels were graphically
approximated by a series of straight line segments. Within a
" given segment, from time t to time t. i+1° the mean-~square

acceleration*, a (t), is glven by

We refer here to the mean-square value based on an average over
a period of time that is small compared to the duration of the
segment.

120




S.
1
poag (t - ty)

2 _ 2
a’ (t) = a (ti) e . t; < t < tis (4.5)

1

th segment in dB/second. The inte-

where s is the slope of the i
grated acceleration spectrum, Ia(w), is found by integrating
Eq. 4.5 and summing over all segments of the time history and

multiplying by the train speed, Vt,

where Aw is the bandwidth of the octave band being studied. Then,
the integrated acceleration spectrum is simply related to the
integrated velocity spectrum by

Ia(m)
Iv(w) = = (4.7)

w

where w is the center frequency of the band. Finally, we substitute
the calculated value for the integrated velocity spectrum in

Eq. 4.2 to find the normalized integrated spectrum level, LN
V,

and then we use Eq.4.3 to find the energy density level, LE .
Comparisons can then be made between data and prediction L
for the energy density level of each element of the elevated

structure.

4.2 Anderson Bridge on MBTA Red Line Extension

The Anderson Bridge is a relatively new elevated structure
crossing the Neponset River on the MBTA Red Line South Shore
Extension. It is an example of a structure with steel plate
girders supporting a concrete deck. A photo of the structure is
shown in Figs. 3.4 and 4.2. A sketch of the cross-section of the
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structure with major dimensions is shown in Fig. 4.6. Other

relevant parameters are given in Table U4.1.

The rail used on the Anderson Bridge is continuously welded
AREA 115 rail with New York type Liberty rail fasteners. The re-
silient material used in the fasteners is 70 durometer butyl so
that the fastener damping loss factor is quite high and is fre-
quency dependent. Based on a study of rail vibration attenuation
data, we have estimated that the fastener damping can be repre-
sented by a viscous damping coefficient of 1.3. Then, the damping
loss factor is Ne = 1.3 (w/wr), where W, is the resonancy frequency
of the rail on its fasteners, which is estimated to be 1728 rad/sec
(275 Hz). However, the dynamic stiffness of the fastener was not

known by the manufacturer and we did not take measurements.

In comparing predictions with data we will base our calcu-
lations of the elevated structure vibration and noise on measured
values of rail vibration. This method of comparison no doubt
improves the apparent accuracy of the prediction model. However,
until an accurate method for predicting rail vibration is developed
in other DOT research activities, we are unable to advance a
complete prediction model that starts from a basic description of
the wheel/rail interaction. For situations in which measured
values of rail vibration are not available, the semi-empirical
procedure described in Section 2 must be used. Results for the
maximum velocity level of the rail vibration obtained using
the procedure of Section 2 are shown in Fig. 4.7 and compared
with measured values. The comparison is reasonable considering
the lack of precision in the empirical prediction of the maximum

rail vibration during the pass-by.

The predicted energy density for the concrete deck and for
the steel girder webs are given by Eqs. 3.32a and b. To evaluate
these equations we require the damping loss factors for the deck,
Ng» and the web, N> the coupling loss factor between the rail
and the slab, nr,s

bending vibration of the web, n

» the coupling loss factor between the slab and
S,w,and the coupling loss factor
between the slab and in-plane vibration of the web, Ns,u Values
for the damping loss factors taken from Ref. [17] are listed

in Table 4.1. Values for the coupling loss factors are obtained
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RAIL:

RE 115 continuously welded rail on Liberty fasteners

m, = 38.3 1b/ft = 1.19 slugs/ft
B = ET = 1.35 x 10/ ft’-1bs
r r r
n =20
r
w_ = 1728 rad/secy f_ = 275 H
r r VA
ne = 1.3 x (w/wr)
K, = 3.55 x 10° 1b/ft/ft
DECK:

concrete slab deck (9" thick, 150 lbm/fts)

112.5 1b/ft? = 3.49 slugs/ft?

Qs =
D =ETI = 2.03x 10/ ft-1bs
s s”s
ng = 0.02
GIRDER WEB:
o = 25.5 lb/ft2 = 0.792 slugs/ft2 (includes effective mass
gw :
of stiffeners)
D w - E wI w - 2.03 x 105 ft-1bs (includes effective stiffness
2 AL of stiffeners)
nw = 0.002
pstiff = 18.41 1b/ft
AXstiff = 12 ft
_ 6 2
Dstiff = 1.83 x 10° ft“-1bs
cy = 1.7 x 10Ll ft/sec
s EW

TABLE 4.1 PARAMETER VALUES FOR THE
ANDERSON BRIDGE ON THE MBTA RED LINE
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from Eqs. 3.33, 3.34, and 3.36. Numerical values for these

coupling loss factors are given below:

% w_ U
- w r 2
nr,s = (m) (-m—) (1 + nf) (4.8a)
_ou.gy x 1074 % (4.8b)
n = ( )
S ,W w
(223,
Ng u = L (4.8¢)
’ 3563 660
1+ (T) + (T)

where w, is the resonance frequency of the rail on its fasteners,
w is the center frequency of the octave band being considered,
and Ne is the fastener damping loss factor. TFor comparison with
data we take the resonance frequency w, to be 1728 rad/sec

(275 Hz), and ng to be 1.3 x (w/wr).

Energy levels obtained from Eqs. 3.32 are shown in Fig. 4.8
and compared with data. At high frequencies, at and above 250 Hz,
the predicted energy levels are within 3 dB of the measured data
for almost every frequency. We consider this accuracy to be
representative to the accuracy generally expected for the prediction

model.

At lower frequencies, below 250 Hz, predicted values are
well below the measured data. This inaccuracy 1s due to the
improper use of Egs. 3.32 for the frequency range below the rail
fastener resonance frequency. However, since the contribution to
the A-weighted noise radiation from these low frequency bands is
not significant, we have not tried to obtain a more accurate

prediction at these frequencies.

Investigation of Egs. 3.32 which give the deck and web
energies and Eqs. 4.8 for the coupling loss factors lead to some

interesting conclusions for this structure. First, we note that
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the coupling loss factors for the web are comparable to or much
greater than the damping loss factor of the web. This means that
effective control of the web vibration must first include a web
damping treatment. Only after the web damping loss factor has
been increased can the web vibration be reduced by decreasing the
coupling between the deck and the web. The coupling loss factors
in Egqs. 4.8 show that the dominant mechanism of vibration trans-
mission from the deck to the web is the transmission of energy from
bending vibrations of the deck to in-plane vibration of the web.
Energy due to in-plane motion is then transmitted to bending
motion by coupling mechanisms at cross bracing and elsewhere.

For équal levels of vibratory energy noise radiation from the
bending motion of the web is greater than from in-plane motion.
Coupling between the deck and in-plane motion of the web

could be reduced by using a resilient material between the deck
and the upper flange of the girders. However, this approach may
not be practically feasible, since the load bearing capability of
the structure could be reduced. The coupling loss factors can
also be reduced by lowering the resonance frequency of the rail
on its fasteners. As a general rule, the fastener qtiffness should
be as low as possible within constraints of vehicle ride comfort
and safety. However, some caution must be used in applying this
rule since use of a soft fastener can result in lower effective
rail damping and consequently higher rail vibrational energy and
more noise radiation from the rail. The fastener stiffness and
damping should be selected to minimize the total noise radiation
from the rail and structure. A second way of lowering the rail
resonance frequency is to increase the mass of the rail. Actual
use of a heavier rail is probably not economically feasible.
However, it is possible to add mass to the rail by mounting the
rail on wood or concrete ties and then using a resilient fastener
under the ties. This arrangement may not appreciably change

the rail vibration velocity levels.

The maximum wayside noise levels are predicted by using the
calculated integrated velocity spectrum levels for each component
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of the elevated structure together with calculated values for the
radiation efficiencies from Section 3.4 to find the total radiated

acoustic power,

W Aw =
rad(m) w po co Z Ivi(w) Auw 0rad

(4.9)
¢ ’i(w) Pr .

ad,i

where Wpad(w)Aw is the total power radiated in the frequency band Aw,
I is the integrated velocity spectrum of element i of the

eldvated structure, crad i is the radiation efficiency for element
k)

i, and P is the radiating perimeter of element i. The radiated

rad,i
power level L is given by

wrad(w)Aw . .
L, = 10 log10 —16:17— with Wrad(w) Aw in watts (4.10)

Finally, the maximum noise level during the pass-by, Lp, is

given by

- - 2D L
Lp = L, - 20 lpg10 D + 10 log, { i arc tan == } (4.11)

where L is the train length in meters and D is the distance from the
measurement point to the track centerline in meters. When D is much

less than L, Eq. 4.11 becomes

= - T
Lp = Lw 10 log10 D + 10 log T for D << L (4.12)

As one check on the accuracy of the prediction model, we
use measured values for the integrated velocity spectrum level in
predicting the wayside noise level. Results are shown in Fig. 4.9.

Comparisons between predicted and measured levels are within 2 4B
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for the most important frequency bands contributing to the A-
weighted noise. However, at high frequencies, above 2000 Hz,
the measured levels are higher than prediction. This result is
believed to be due to radiation from the wheels and other car
surfaces which has not been included in the prediction model.

Below 1000 Hz the dominant sources of elevated structure
noise are the webs of the steel girders. At higher frequencies
the dominant sources are the rails. Elimination of the webs and
the rail as noise sources by reducing their vibration level or
by enclosures, coverings and barriers would reduce the noise levels
in the frequency bands centered at 250, 500, 1000 and 2000 Hz.
The noise in the lower frequency bands would not be reduced because
of slab radiation. Noise in the higher frequency bands would not

be reduced because of sources on the vehicle itself.

Eliminating the rails as significant noise sources would
reduce wayside noise levels by only 2 dBA. Eliminating only the
webs as significant sources would also provide only a 2 dBA
reduction in noise. However, elimination of both the rail and
webs as sources would provide 10 dBA of noise reduction, although
the noise radiation from the vehicle may prevent this degree of
noise reduction from actually being achieved.

The overall accuracy of the prediction model for the particu-
lar structure being studied is shown in Fig. 4.10. Agreement
between prediction and measured data is limited by the accuracy
with which rail vibration levels have been predicted, see Fig. 4.7.

4.3 Elevated Structure near Green Street on MBTA Orange Line

The elevated structure near Green Street on the MBTA Orange
Line is typical of older structures that are in use in New York,
Chicago, Boston, and Philadelphia. A photo of the structure is
shown in Fig. 3.3. Other relevant information is shown in
Fig. 4.11 and in Table 4.2.
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" The rail used on the Orange Line is jointed AREA 100 rail
fastened directly to wood ties. The ties form an open deck which
is supported by steel I-beam girders with plate webs. Because of
the age of the structure, many of the ties were not rigidly
connected to the upper flanges of the girders. We assume, however,
that the weight of the deck and the loading by the vehicle is
sufficient to maintain the contact between the tie and the girder

flange so that the system dynamics are linear.

The resonance frequency of the rail on its supports is deter-

mined by the compressional stiffness of the ties and the degree

to which contact is maintained between the rail and the ties.

If we assume that perfect contact is always maintained along the
entire length of track then the rail resonance obtained using the
static stiffness of the ties is 470 Hz. However, we do not believe
that perfect contact is maintained. We estimate the effective
contact area is approximately one fourth of the nominal contact
area between the rails and the ties. Thus, we expect that the
stiffness calculated by assuming perfect contact between rail and
ties should be reduced by a factor of four to obtain the average
stiffness over the length of the train. In this case the average
resonance frequency is approximately 235 Hz. We will use this

value in our calculations. Clearly, our approach here cannot be
.completely justified without further work.

As in the previous Section we will base our calculations of
elevated structure noise and vibration on measured values of rail
vibration. Time histories of typical octave band acceleration
levels for the rail are shown in Fig. 4.12. The measured levels
peak each time a wheel passes the measurement point. However, as
for the MBTA Red Line data the heights of the different peaks vary
by up to 10 dB. This variation is probably due to variations in
wheel condition. Other peaks in the time histories occur which do
not correspond to the passage of a wheel. These are due to the
impact of the wheels at the rail joints.
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Use of the measured rail vibration data to calculate a
normalized integrated spectrum level according to the procedures
of Section 4.1 is difficult because of the rapid fluctuation of
the observed levels. Therefore, we did not use the described
computational procedure and instead proceed directly to take a
visual average of the levels. We estimate the accuracy of this
visual averaging to be * l% dB; within the expected range of
accuracy for the prediction model. For other elements of the
elevated structure we used the integration procedure described in
Section 4.1 to find the integrated spectrum level and the energy
density level in the different octave bands. Results are shown
in Fig. 4.13 where they can be compared with values obtained using

the prediction procedure.

The predicted energy density for the wood tie deck and for
the steel girder webs are given by Egs. 3.42. To evaluate these
equations we require the damping loss factor for the ties, ngs
the damping loss factors for in-plane and bending motion of the
webs, "y and n,s the coupling loss factor between the rail and
in-plane motion of the web and the rail, nr,u5 and the coupling
loss factor between the ties and bending motion of the web, nw,t
The damping loss factor for the ties is taken to be that of wood,
while the loss factor for bending of the web is due almost entirely
to radiation losses, since the material loss factor for steel is
so small. The damping loss factor for in-plane motion of the web
is taken to be that of steel and can be set to zero in the
calculations since it is much smaller than the loss factor for
bending of the web. The two coupling loss factors are given by
Eqs. 3.43 and 3.44 . Parameter values required to evaluate these

equations are given in Table 4.2. Using these values we find

w 3
N = 6.52 x 107° w_(-5) (4.13a)
r,u r w
and
_ 0.0438
w,t = = (4.13b)
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RAIL:

RE 100 jointed rail on wood ties

m, = 33.5 1b/ft = 1.04 slugs/ft
a ] 7 .2
Br = ErIr = 1.02 x 10 ft“-1bs
n, =0
w_ = 1475 rad/sec; f = 235 Hs
T T
nf = 0.02
K, = 2.26 x 10° 1b/ft/ft
TIES:

8" by 8" by 8' long ties spaced 16" on centers

16.7 1b/ft? = 0.519 slugs/ft>

o, =
D, = 3.20 x 10% ft-1bs
n, = 0.08

GIRDER WEBS

3/8" thick steel plate webs

0 15.1 1b/ft? = 0.469 slugs/ft>

gw
_ 4
Dy, = 1.10 x 10% ft-1bs
®g,gw = 1.7 x 10% ft/sec
n, = 0.002

TABLE 4.2 PARAMETER VALUES FOR THE ELEVATED
STRUCTURE NEAR GREEN STREET ON THE MBTA ORANGE LINE

138




h

where w, is the resonance frequency of the rail on the ties and w

is the. octave band center frequency.

The agreement between predicted values and measured data
is within 3 dB for most frequency bands. However, at low frequen-
cies, octave bands centered on 125 and 250 Hz, the prediction
model gives values for the web energy density level that are too
high. Since similar inaccuracies were observed for the Anderson
Bridge we expect that the prediction model may consistently give
values for the web vibration at low frequencies that are too high.

This inaccuracy is not surprising since we have used a prediction
model that is valid only at frequencies above the rail/fastener
resonance frequency. Fortunately, the noise radiation in these
low frequency bands does not contribute significantly to the
A-weighted wayside noise levels.

Predicted noise levels 50 ft from the track centerline are
shown in Fig. 4.14 and compared with measured data. The predicted
levels have been obtained by using measured vibration levels for
each element. Comparison of prediction with data again shows that
the model predicts too much noise radiation at low frequencies.
However, in spite of this inaccuracy the model allows us to gain
a clear indication of the relative contribution of the different
sources to the total radiated noise. At high frequencies the
dominant noise source is the rail. At lower frequencies the webs
become the dominant source. Thus, to be effective a noise control
program must consider methods to reduce the noise radiation from
both the web and the rail. Elimination of the web as a major
source by reducing its vibration level or by use of an enclosure
or covering would reduce overall noise levels by only 2 dBA.
Similarly, elimination of the rail as a major source would reduce
levels by only 3 to 4 dBA. However, if both sources were quieted
the total noise would be reduced by over 10 dBA®. Noise radiation
from the ties is not a major problem because their vibration levels
are well below those of the other elements due to the fairly high

material damping of wood.

®
This level of noise reduction may not be achieved if the vehicle

becomes significant. Further work on this matter is needed.
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Reduction of the noise radiation from the rail could be
best accomplished by reducing the rail vibration. When possible,
the rail joints should be eliminated and the wheels and rails kept
in a smooth condition by periodic rail grinding. Use of resilient
fasteners with high damping would provide damping to the rail and
result in lower vibration levels. Also, it may be possible to
apply a damping treatment directly to the rail. Reduction of the
radiation from the rail by use of barriers would be difficult

because of the openness of the tie deck.

Reduction of the noise radiation from the web could be
accomplished by either reducing the web vibration levels or by use
of an enclosure or covering. Investigation of Egs. 3.42 which
give the deck and web energies and Egqs. 4.13 for the coupling
loss factor lead to the conclusion that a reduction of the web
vibration can be obtained by two steps: first, the web damping must
be increased; second, a resilient material should be used between
the ties and the girders to reduce the coupling between the rail
and in-plane motion of the web. A second equally valid approach
would be to reduce the rail vibration so that the excitation of

the web is decreased.

In our measured data we observed that the wayside noise
levels jump approximately 10 dB(A) when the train crosses onto
the bridge. Yet we conclude that the rail is as important to the
total elevated structure noise asare the other components of the
structure. We are led to the further conclusion that the rail
vibration levels are higher when the train is on the elevated
structure than when it is at-grade on tie and ballasted track.

This conclusion may be unique to the specific case studied.
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4.4 Elevated Structure Near Hathon Square on MBTA Orange Line

The elevated structure near Hathon Square is similar to
the structure near Green Street except that the girder webs are
formed by bolting together various truss elements. A photo of
the structure is shown in Fig. 3.2. Other relevant information
is shown in Fig. 4.15 and in Table 4.3.

The rail used on the MBTA Orange Line is jointed AREA 100
rail fastened directly to wood ties. The ties form an open deck
which is supported by steel girders. As in the case of the
Green St. structure, we believe that the actual contact area between
the rails and the ties is much less than if there were perfectly
matching surfaces. Thus, in calculating the resonance of the rail
we reduce the stiffness of the ties by a factor of four. As in

the previous case, the resonance frequency is taken to be 235 Hz.

We will base our calculations of elevated structure noise
and vibration on measured values of rail vibration. The time
histories of the octave band acceleration levels for the rail were
found to be quite similar to those found for the Green St.
structure. Therefore, the procedure outlined in Section 4.3 was
used to compute energy ‘density levels for the rail.

The predicted energy density for the wood tie deck and for
the girder elements is given by Eqs. 3.46. The coupling loss
factors in these equations are given by Eqs. 3.47 and 3.49. Using
the parameter values from Table 4.3 we find

Iy ()%
- w .
nr,t = — 5 (4.14a)

w
r r
0.02(—w—) w - 2(T)

(w)Jﬁ + 98.5

and

409

n = (4.14b)
t,u w + 65.5 (Lu)}5 + 2145
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RAIL:

RE:

GIRD

op

100 jointed rail on wood ties

33.5 1b/ft - 1.04 slugs/ft

E T = 1.02 x 10/ ft?-1bs
r r

=0

1476 rad/sec; fr = 235 Hz

0.02

2.26 x 106 1b/ft/ft

by 8" by 8' long ties spaced 16" on centers

16.7 1b/ft? = 0.519 slugs/ft?

3.20 x 10° ft-1bs

0.06

ER WEBS:

en webs comprised of steel beams (equivalent distributed
properties are given below)

= 6.48 1b/ft? = 0.20 slugs/ft?

Dgw

cy = 1.7 x 10L+ ft/sec
3

nw = 0.002

n, = 0.002

TABLE 4.3 PARAMETER VALUES FOR THE ELEVATED
STRUCTURE NEAR HATHON SQUARE ON THE MBTA ORANGE LINE
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where w, is the resonance frequency of the rail on the tie deck,
assumed to be 235 Hz (wP = 1476), and w is the band center
frequency. Parameter values for the damping loss factors are
given in Table 4.3. The damping loss factor for the tie deck,
Nys has been taken to be that for wood. The damping loss factors
for the y and z components of the vibration for the structural
members forming the web have been taken to be equal and due only

to acoustic radiation losses.

The predicted energy density levels are shown in Fig. 4.16
and compared with measured levels. The agreement between theory
and experiment is good above 500 Hz. However, at lower frequen-
cies, the predicted levels ary significantly higher than those
measured. This error may be due to inaccuracies in prediction
of therail resonance frequency or to improper use of Eqs. 3.u46
at frequencies below the rail resonance frequency. Fortunately,
the contribution of the low frequency vibration to A-weighted
levels is not large. Thus, in this report we will not attempt to
improve the prediction at these low frequencies.

Predicted noise levels 50 ft from the track centerline are
shown in Fig. 4.17 and compared with measured levels. The pre-
diction, which is based on measured vibration levels for the
different structural components, is in good agreement with the
data at all frequencies. Thus, we conclude that the major errors
in the overall prediction model for this type of structure will
come either from errors in predicting the rail vibration or from
errors in relating the low frequency component vibration levels

to the rail vibration levels.

Fig. 4.17 shows that the rail is the major source of noise
at and above 1000 Hz. Thus, an overall reduction of the elevated
structure noise will require reduction of rail radiation. At
lower frequencies all components contribute equally to the noise
radiation. Thus, each component must be given attention. The
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prediétion model and the measured levels show that the rail

energy is greater than that of either the tie deck or the girders.
The prediction model shows further that the coupling loss factors
are smaller than the damping loss factors. Thus, reduction of

tie and web vibration can be achieved either by reducing the
coupling loss factors or by increasing the damping. This is a
different result than that reached in the previous two cases where
it was necessary first to increase the damping.
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5. CONCLUSIONS

The elevated structure noise prediction model developed

in the report requires five steps:

1) prediction of maximum vibration levels for the
rails during a pass-by;

2) relating the maximum levels to the total vibratory
energy for the rails;

3) relating rail energy to the vibratory energy of
each component of the elevated structure (deck,
girder, etc.);

4) calculation of radiated acoustic power;

5) relating the acoustic power to sound pressure levels

at specified distances from the structure.

Each of the five steps is to be carried out in frequency bands.

A-weighted sound pressure levels can then be calculated.

5.1 Critical Review of the Prediction Model

The field studies of three different types of elevated
structure that were carried out as part of the program provide
data which support to varying degrees the validity of the
prediction procedures for each of the five steps above. That
part of the prediction model, which involves using measured
vibration levels for the different elevated structure components
to predict the radiated acoustic power (step 4) and the sound pressure
- levels 50 ft from the track centerline (step 5), appears to be quite
accurate. Comparison of prediction with data for the Anderson
Bridge, Fig. 4.9, and for the Hathon Square structure, Fig. 4.17,
show good agreement over almost the entire frequency range. Only
at high frequencies do significant discrepancies occur. We
believe that these are due to the fact that noise radiation from
the wheels and other car surfaces has not been taken into account.
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The agreement between prediction and data for the Green St.
structure, Fig. 4.14,is not as good as for the other two
structures. However, we consider it to be sufficiently good as
to support the use of the prediction model for calculating
A-weighted noise levels and for determining the value of proposed

noise control treatments.

The procedure for relating the vibratory energies of each
component of the elevated structure to measured rail vibrational
energy (step 3) appears to be quite accurate at high frequencies but to
be of very limited accuracy at low frequencies. This result is
particularly evident in the case of the Hathon Sq. structure, see
Fig. 4.16. In developing the theory two sources of inaccuracy
were repeatedly noted. First, the formulation of the prediction
model is based on assumptions that are valid only at frequencies
that are above the resonance frequency of the rail on its fasteners
or wood ties. Second, the calculation of the rail/fastener
resonance frequency is based on a very qualitative argument with
little precise data input. We have not tried to improve the
accuracy of the prediction model at low frequencies, because the
contribution from vibration at these frequencies to the A-weighted
radiated noise level is not large. However, as the high frequency
noise levels are reduced by addition of noise control treatments,
it may be necessary to improve the accuracy of the prediction
model at low frequencies. A general approach is outlined in
Appendix II of this report.

The accuracy of the prediction model for calculating the
rail vibrational energy (step 2) is limited by the inaccuracies in the
prediction of maximum rail vibration levels (step 1) and by the lack of
information and data on the damping provided by the rail fastener
or the wood ties as the case may be. In the present program we
have not collected this type of information.

The overall accuracy of the prediction model is adequate
if the rail vibration levels are known. Of course, this is
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usually not the case. Thus, in practice the accuracy of the model
is limited by the accuracy with which the rail vibrational energy

can be predicted.

5.2 Noise Control Techniques

A significant conclusion derived from the prediction model
is the apparent importance of the rails as sources of elevated
structure noise. For each of the three structures that were
studied the rails are the dominant noise sources at high frequen-
cies. Thus, complete elimination of the remaining structural
components as significant noise sources would only reduce the A-
weighted wayside noise levels by a few dB. At the same time
elimination of the rail as a significant noise source would only
reduce the A-weighted noise by a few dB, since the elevated
structure steel girders dominate the noise radiation at the mid-
frequencies in the approximate range 200 to 800 Hz. The concrete
slab or wood tie decks do not contribute significantly to the
A-weighted noise. Thus, the initial step in controlling elevated
structure noise is to reduce the noise from the rails and steel

girders.*

The prediction model shows that one approach toward attaining
this objective is to reduce the vibratory energy of the rails.
This can be done by 1) adding a damping treatment to the rail,
2) increasing the damping of the rail fastener, and/or 3) decreas-
ing the rail and wheel roughness and eliminating wheel flats and
rail joints. The third technique is well known. However, the
effective and practical use of the other two techniques should be
studied further.

® . . e s . . .
Available evidence indicates that noise from concrete girders is

not significant compared to that from the rails.
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The stiffness of the rail fastener (or wood tie) and the
mass of the rail controls the rail/fastener resonance frequency.
Reduction of this resonance frequency, by using softer fasteners
or heavier rail, has two effects. First, the coupling between
the rail and the other components of the elevated structure is
reduced. However, the reduction in coupling will not result in a
reduction in vibration if the damping of the elevated structure
components is small. The second effect of decreasing the rail/
fastener resonance is to decrease the effective rail damping and,
thereby, increase the rail vibratory energy. Thus, the net effect
of decreasing fastener stiffness on lightly damped elevated
structures is to increase the noise. On the other hand, if the
structure is well damped, the effects of increased rail radiation
may be balanced by decreased vibration and noise radiation from
other components of the elevated structure.

The prediction model indicates that steel girder vibration
and noise radiation can be significantly reduced by damping the
girder webs. Further study to develop effective and practical
web damping treatments is needed.
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APPENDIX I. REFINED MODELS FOR STUDYING RAIL VIBRATION

The simple model of the rail as a beam on a continuous
visco-elastic foundation excited by a point force does not take
into account many factors that could conceivably affect the rail
vibration. In reality, the rail fasteners are not continuous,
but are a series of periodic supports. In addition, the excita-
tion is not a single point force, but is a number of point
forces at each wheel location. We explore the effects of these
two related factors in Section I.1. It will be concluded that
the effects are sufficiently small for typical rail parameters
that they can be ignored.

In Section I.2 we will explore more precise models of rail
damping. The simplified model of Chapter 2.3 uses the assumption
that the rail fasteners have a frequency independent modulus of
elasticity and damping loss factor. However, most fasteners use
rubber-like materials in which both the modulus and loss factor
are frequency dependent. The simplified model does not take into
account the shear stiffness of the rail fastener. In Section I.?
we will also investigate the effect of fastener shear stiffness
and explore the possibility that the rail and rail fastener act

like a constrained damping layer.

The inclusion of frequency dependent fastener properties
improves the prediction model and provides a more accurate
picture of the decay in bending vibration levels with distance

down the track.

In Section I.3 we study the effect of shear deformations
- on the rail vibration. We conclude that there is a significant

effect, but only at high frequencies, above 2000 Hz.

Finally, in Section I.4 we consider the case in which the-
support under the fasteners is not rigid. We conclude that the
rigid-support model can be used to study the rail vibration.
Errors incurred using this model are significant only over a

very limited range of frequencies.

163




I.1 Discrete Rail Support Points and Multiple Excitation Points

The refinements of the rail vibration model to be
discussed in this Section are concerned with effects of multi-
wheel excitation and of the periodic nature of the rail supports.
We wish to determine if there are any significant qualitative
effects due to multi-wheel interaction that would invalidate the
simple results of the single wheel model. Also, it is desired
to find what role (if any) the wave propagation effects of
periodic rail fastening have in vibration attenuation.

In general, the problem we wish to consider consists of a
multi-car train with two trucks to each car passing over rails
resiliently fastened by discrete supports to a supporting struc-

ture. The assumptions that will be made are:

A. There is no dynamical coupling between rails due to

wooden ties or other structural members;

B. The input impedance of the track support structure is

much larger than that of the railj

C. The rail is excited by the relative wheel-rail rough-
ness and the roughness of different wheels are

uncorrelated.
D. Linearity

From assumptions A and B it is sufficient to determine the
vibration of a single rail elastically mounted on a rigid
foundation. Assumption C implies that one may synthesize a total
solution by superimposing rail responses due to direct excitation
by the roughness of one wheel with the other wheels acting as
passive loads. Since the effects of multi-wheel interaction on
rail vibration are likely to be greatest for wheels closest
together, we consider just two wheels of a truck. Finally, since
for the frequencies of interest bending wavelengths are much
larger than the length of rail fasteners, we model the fasteners
as point supports offering both vertical and torsional restraint.
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The basic problem may be envisioned as in Fig. I.1l. The
impedance, Zwl’ of the first wheel is connected via a relative

h

velocity source to the 0t bay of the rail fastener system,

while the second wheel passively loads the pth

bay through its
impedance ZW2. Here, VWR(m) is the relative wheel-rail

velocity amplitude due to wheel and rail roughness. The fast-
eners each with linear stiffness, K, and torsional stiffness, G,
periodically support the rail with a separation distance, %.
Furthermore, the rail itself is idealized as a Bernoulli-Euler
beam with bending rigidity, B,> and mass per unit length, m,.
In these calculations, we have followed Bender and Remington[5]
and modeled the wheels by mass impedances including the wheel

mass and an equivalent axle mass.

Among the specific questions we wish to answer with the
above model are:

(1) What are the effects on wave propagation and attenuation
of the discrete nature of fasteners as opposed to the

predictions of the continuous elastic support model?

(2) What effects do wheel positions relative to fastener

locations have on vibration excitation?

(3) Is there significant build-up of vibration between truck
wheels due to reflection of bending waves at wheel

locations?

To answer these questions a computer program was developed
for this problem. The analytical formulation and a listing of

the program are in Sections I.1.1 and I.1.2.

As can be gathered from the above statement of the problem,
we shall address ourselves primarily to the bending response of
the rail. Time and cost constraints have prevented the inclusion
of rail torsional motion in the computer calculation. However,
the torsional vibrations of the rail are believed to be less im-

portant in predicting elevated structure noise.
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In the following subsections, we discuss the underlying
theoretical development and then present some computational

results and conclusions.

I.1.1 Theoretical Developments for a Periodically Supported Beam
In this section we present the analytical results which
form the basis for the computer program. The basic problem is
shown schematically in Fig. I.1l. The theory of free wave propa-
gation is discussed first, and then the response relations for

two different excitations are developed.

1.1.1.1 Free-Wave Propagation

In determining the characteristics of free wave propaga-
tion in the rail, we presume the displacement to have a harmonic
time dependefice of frequency w,

u = @ e Jut (I.1)
From Fig. I.1l, it is apparent that the rail-fastener system may
be divided into identical "bays" of length %. One of these is
shown in Fig. I.2a. The motion of individual bays will be treated
using a local x coordinate with its origin at the left end of the
bay. Parameters SA' M,, etc., denote the total applied shear
- force and moment due to both the beam segment and the linear and

torsional stiffness of the fasteners. The remaining field variables
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at each end are the displacements Upr Ug and the rotations

@A = uA, and OB = ué, where "'" signifies differentiation
with respect to x. Fig. I.2b shows the usual sign conventions
and constituative relations for shear force and moment within
each beam segment. We note at the outset that K and G may have
any frequency dependence and that K, G and E may be assumed

complex to account for solid-type damping in the rail or its

fasteners.

Now we look at an individual bay. Within the endpoints

A and B, the displacement phasor obeys the beam equation

.alll| = k“a , k = r (1.2)

for which the general solution is

u(x) = A cosh kx + B sinh kx + C cos kx + D sin kx
(I.3)

where we have dropped the tilde.* Imposing the conditions

u(o) , u u(l)

=
n

B

(o]
\

u'(o) , © u' (2)

B

we find that the displacements and rotations at each end may be

*In the followiné, the symbols for all fields variables denote
the corresponding phasors.
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related to the constants A, B, etc., by:

B 7
o k o k A
k sh. k ch. -k s. k c. B
= (I.4)
1 o 1 o C
L ch. sh. c. S. D
where s. = sin k&, c¢. = cos k&, sh. = sinh k% and ch. = cosh k&.
The inverse of this relation is
1 1 j
A =(ch.s.~c.sh.) =(sh.-s.) c.ch.+s.sh.-1 c¢.-ch. 0
k k A
B i(c ch.-s.sh.~1) l(c -ch.) -sh.c.-s.ch sh.+s 0
_ 1 % (c.ch.-s.sh. % (c. . .c.-s.ch. .+s. B
2(c.ch.-1) 1 1
C E(c.sh.-s.ch.) g(s.—sh.) ch.c.-s.sh.-1 ch.-c. uA
D l( h + h.-1) l(ch -c.) sh.c.+s.ch -sh.-s u
k ch.c.+s.s8h. k - - . . - . . . B
- » (I.5)

Balancing forces and moments at the two ends and using the con-

stituative relations gives the conditions

u 't o+ % u, = - ;%
U L ‘g% (1.6)
ug' ' - %;B = T :_?'

where .y = %T , K = %f
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Using Egs. 1.4 givesthe following relation between the

shear forces and moments and the constants A, B, etc.:

[~ A AT
1 =5 -1 "-2- A kMA
K K .
= 1 - -1 B S
ch +Ash. sh +Ach. -C -ls. -s.+Ac. C Bk kM
-+ -5 -3 3 B
K K K S
th'-70h‘ ch. §sh. s.—§c. c.-Es. D SB

wher A= S K =
where = Bk ! —3

Finally, substitution of Egs. I.5 into Egs. I.7 gives the

relation between shear and moments and displacements and rotations:

‘/MA 11 12 “13 14 | 2
Sa 3| 713 %14 23 “24 )
= EIk (1.8)
« l-c.ch. ‘
My €12 T"11 %14 “13 Up
kSB L+“14 13 T%24 %23 Ug
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where

= 1 [ch.s. - c.sh. =~ % (c.ch. - 1)}

k
« ., = ii [sh. - s.]
<13 = % s.sh.
=4 = & (c. - ch.)
5y T % (c.ch. - 1) - sh.c. - s.ch.
“,4 = S-: + sh.

At this point, note that Egs. I.8 may be rearranged to read:

B A
% 1%
= T (1.9)
Sg Sa
My My

" where T is constructed from the matrix in Egs. I.8. Let us denote
the state vectors at the right and left ends of bay n by

{uAn’ OAn' San’ MAn} and {uBn' OBn' Spn’ MBn}’ respectively. For
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h

the nth and (n+l)t bays, we must have {uB C] S__ ., MBn} =

Bn’ "Bn
}. Then, from Eqs. I.9

nl

{uA(n+1)' eA(n+1)’ SA(n+1)’ MA(n+l)

LIA uA
GA OA )
= 7 (I.10)
SA SA
M M
A [(n+1) Al (n)

Hence, T is seen to be the transfer matrix of the system, relating

the state vector at the left end of bay n+l to that at the left end
of the preceeding bay. For future reference, we note that

Egs. I1.10 may be expressed in another form. Let

.~ = {An, B, C_, D} (I.11)

be the vector of coefficients appearing in Egs. I.3 for the dis-
placement of bay n. Then, using Egs. I.4 and I.7 to express

Eq. I.10 in terms of = and = . ,, we have:

w1 = I (x.12)
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where

A A A
Ch.+§'Sh. Sh.+—02 h. -—2‘5. —-C2 .
K K K K
Sh.-—z-Ch. Ch.-ESh. EC. ES.
I =
-—sh. -lch. c.+=s. s.-lc.
2 2
K K K
§Ch' ESh' -s.+§c. c.+7s.

Let us now consider the significance of the eigenvalue

ui

problem of §. Denoting these eigenvalues by e (i =1,...,4),
then
up u,
OA i OA
= et (I.13)
SA SA
M M
A) (n+1) B/ (n)
if {uA, GA, SA’ MA} is the eigenvector corresponding to upi. This

equation shows that the eigenvector of § represents a distinct
displacement shape which propagates undistorted from bay to bay
.with only a change in amplitude and phase, given by the factor

e’'. The ui's are the propagation constants. The total beam

displacement can be expressed in terms of an arbitrary linear
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combination of the eigenvectors of ¥.

The propagation constants can be determined by setting

= aH .

homogeneous equations in OA, Up s SA and MA‘ Requiring that the

= e“uA » etc., in Egs. I.8 to obtain a set of

determinant of the coefficient matrix vanish gives the following

condition determining the propagation constants:

(Cosh™u) [%15%247" 4] + (COShU) [xyeyy + ey )] + [=) =)0 + =71 = 0
(I.14)
The four roots for e! consist of two reciprocal pairs. We
define our notation such that
Re(ul), RE(uy) > 0 H3 = ~Mpr My = -Hy (I.15)
To obtain the corresponding eigenvector of T, we can impose
i +1 ] = = = H
the three conditions, GB x@A, up X Up, SB X SA’ where x = e",
on Egs. I.8. Using Eqs. I.4 and I.7, we find that B,C, and D may
be expressed in terms of A by:
sh. c.=X S. Bui x-ch.
ch.-x -s. cC.-X C . = A ., -sh. (I.16)
H1 H1
K
0 S. 2x X-C. Dui 2x
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where Au, Bu, Cu and Du are the constant coefficients in Egq. I.3

corresponding to propagation constant p. Solving these equations,

one finds that the displacement, u, in any one bay may be written:

u(x) = [uui(x)]{Aui}'
where
(I.17)
[uui] = [uui' Wigr W gr uu4]
[uui] = [cosh kx, sinh kx, cos kx, sin kx] [2].
T 1 1 1 1]
bul buZ bu3 bu4
el = c c c c
ul u2 u3 ué
Léul du2 du3 du4
and where
=1 -T )~ - - -
bui = D{s.[s.(s. T3) sh.T3] Tl[Tz(s. T3)+T1(sh. s.+T3)]}
-1 - _72 -
cui = D{Tl[sh.(sh. s.+T3) T2] + s.TZ(s. T3)}
' Y - - -
dui D{TZ[Tl(s' T3) + T2T3] + sh.[s. (s. T3) sh.T3]} (1.18)
D = Tl[’I‘lT2 + sh.(s.-T3)] + s.T2T3
—4 — = - - —-— 5
Tl = C. X5 T2 ch. X o T3 S. > Xy
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Egs. I.14, I.17, and I.18 give the displacement within any
non-excited bay. To obtain the variation of response from bay to

bay note that

=} = 2} (I.19)

and since the eigenvector {u,, © S., MA} of T associated with

A’ “a
ui corresponds to uui given in Eq. I.17, we have

g 1e = el (I.20)

Thus, the columns of Q are the eigenvectors of T and both T and |
have the same eigenvalues. Finally, combining Egs. I.12, I.19,

and I.20, we obtain:

{

= (oM
} . [e\]{Au(n)} (I.21)

Au(n+1)

where [‘eE] denotes a diagonal matrix (all off-diagonal terms zero).
In conjunction with Egs. I.17 and I.18, this relation gives us
the displacement field in all non-excited bays once the response

of one bay has been determined.

I.1.1.2 Forced Response

Now we must determine the displacement in bay 0, which is

excited by the point force g(t), as shown in Fig. I.3a.
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o—  b—

q=qe ™

=2 -r Tewo I v )| 2 |

(a)

POSITION OF THE POINT FORCE ON THE RAIL
DUE TO EXCITATION BY THE FIRST WHEEL

‘_l L'-Zup(x-b)
| p-1 | sarp || P+1 .-

(b)

LOCATION OF POINT FORCE ON THE RAIL DUE
TO PASSIVE LOADING BY THE SECOND WHEEL

FIG.1.3 LOCATION OF THE EXCITATION POINTS
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At the excitation point X, =

coordinate of bay 0), we have the conditions

where the subscripts (+) and (-) denote points

right or to the left of X, a. Let

u = A(+) cosh kx + B(+) sinh kx + c(+)
for x > a:and
o
= + i +
u A(_) cosh kx B(_) sinh kx (o)
for X, < a. Substitution of these into Eq. I.
Eq. I.19 yields:
‘ y ¢ ) 5 -1 sh.ka
A = {A + =2 Q -ch.ka
U (o+) u (o-) 2 - -s.ka
c.ka
where
~ 1
09 —3
EIk
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a (where X denotes the local

(I.22)

immediately to the

cos kx + D(+) sin kx
(I.23a)
cos kx + D(_) sin kx
(I.23b)
22 and use of
(I1.24)



The effects of the loading of the second wheel on the pth

bay (as shown in Fig. I.3b) may be handled similarly. The pth

bay is excited at xp = b by the force g.

a, = zﬁp(xp=b) (I.25)

where Z is the impedance of the second wheel. Evaluating
u_(x_=b), we get
p *p ’ g

q, = -2jw lch.kb, sh.kb, c.kb, s.kb| @ {Au(p_)} (I.26)

where again there are two {Au} vectors, one for the segment to
the left of xp = b and one for the segment to the right. The

resulting conditions on the pth bay are

A = A + A {a .
Pupnt T Byt v LR ) (1.27)
where
3 -1 sh.kb
A= -juT Q -ch.kb/ |ch.kb, sh.kb, c.kb, s.kb] @
2 - ~-s.kb -
c.kb
2 = —L;
EIk
Finally, Eq. I.21 gives the additional condition:
= ~ o PH
{Au(p_)} [Cex ]{Au(o+)} (I.28)
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Egs. I.24, I.27, and I.28 constitute a set of eight equa-
tions in twelve unknowns. However, since My and u, were defined

such that their real parts are positive we must have

Biires T P2en) T Mus(o-) T Pud(o-)

in order that the displacements remain finite at x = t»., Hence,
Egs. I.24, I.27, and I.28 may be rearranged into the following set

of equations:

o o o O] A3 (p+) o
o o r o o Au4(p+) o
1 o (4 x 4) o o Aul(o+) o
o 1 o o Au2(0+) 5 o
_ = X (I.29a)
o o I 1 o Au3(o+) 2 sh.ka
o o (4 x 4) o -1 Au4(o+) 1 -ch.ka
. f
o o) o o Aul(o-) - -s.ka
o o o o- Au2(o—) c.ka
= ~ Py
and {Au(p-)} [Tel ]{Au(o+)} (I.29Db)
~ where
_ . 2 -1 (sh.kb <« Pu,.
r =-[1I - juz 2 —ch.kp/ [ch-kb, sh.kb, c.kb, s.kb]Q] [“eI"] (I.29¢c)
~-s.kb
c.kb
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{

}, {a }, {A } and {a } can now be obtained

B () U (p-) U (o+) u(o-)
from Egs. I.29. The {Au} vector for any other bay can be cal-
culated from Eq. I.21. Finally, the displacement in bay n, u
can be obtained from

un(x) = [cosh kx, sinh kx, cos kx, sin kx][Q_]{AIJ } (1.30)

(n)
This completes the development of the solution procedure.

1.1.1.3 Wheel-Rail Roughness Excitation

When the excitation by the first wheel is a force source,
the appropriate phasor, {, of the exciting force can be employed
directly in Egs. I.29 to obtain the Au's and subsequently all
response quantities. However, when the excitation is due to
relative wheel-rail roughness, the phasor of the force on the
rail is given by

. 2 Z_Z

_w rw =W =
q = -E— Zr—_‘_zw— [¢w(k—§) + ¢r(k—w/s)] (I.31)

where w is the radian frequency, $ is the train speed, zw is the
impedance of the wheel, Z. is the driving point impedance of the
rail, and [¢w(k) + ¢r(k)] is the sum wavenumber spectra of the

wheel and rail roughnesses. For frequencies in the range 100 to

1500 Hz, a reasonable approximation for Zw is

2 = - juM (I.32)
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where M is the mass of the wheel, bearing and an equivalent axle

mass.

The rail impedance may be found by setting § = 1 in Egs.

I.29 and solving for the Au's. Then

-1_1  _. -
z,” = 3 (=jeu (w,x = a))
(I.33)
-'w
= .k h.k .k .k
;i;g [ch.ka, sh.ka, c.ka, s.ka] 2 {Au(o-)}
Using this value of Z,s the final solution can be obtained by
multiplying the solution with § set equal to 1 by
2 Z_ 2
1l w r'w w w
Q= (@ (k=7) + B_(k=3)] (I.34)
EIk3 S Zr + 2, w S r S

I1.1.2 Computer Program

A computer program, based on the above analysis, has been
developed. The program is written in Fortran IV and has been run
on a DEC 10 System. The program computes propagation constants
and acceleration spectra for a rail-fastener system with speci-
fied material and geométric parameters. The calculations are
performed for the desired range of frequencies and positions. on
the rail. Parameters are put into the program as part of the

program listing either in data statements or under the section of

173



the program "parameters." As it is set up, the program must be
recompiled for each new set of input parameters. A parameter

listing is given below:

Fortran Variable Input Line

Name Name In Program Description

FL L 4 fastener spacing

A a 4 see Fig. I.1

IP p 4 bay number, Fig. I.1l

B b 4 see Fig. I.1l

FI I 5 rail moment of inertia

RHO m. 5 rail mass per unit length

FM M 5 wheel mass

MJ 5 number of bays for which calcu-
lation is carried out

FDL AE 6 length between computational points

RDOT (2) ¢w + ¢r 14 wheel and rail roughness spectrum

E E(l—jnr) 16 E, Youngs Modulus of rail material
N rail damping

FKP K'(l-jnf) 18 k' = K/(EI)

FKC K(l~jnf) 19 K, fastener spring constant
ury fastener damping

FLP l‘(l-jnf) 20 A' = G/ (EI)

G G(l-jnf) 21 G, fastener torsional stiffness
Ngrs fastener damping

INDQ INDQ 26

IOM w 27 frequency

- OMEGA w 28 fregency
COM w(mrIL‘;/EI);5 35 dimensionless frequency
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Units are in ft, lbs, slugs, and seconds. Computations are per-
formed for bays - MJ/2 to + MJ/2 inclusive. 1In each bay, the
acceleration is evaluated at %2/Af equidistant points. 1INDQ is a

dummy variable offering the choice of one of two options:

INDQ = 1 : Rail response is computed for a force
source excitation with magnitude such
that § = 1,

INDQ = 2 : Computations are carried out for a

relative wheel rail roughness excita-

tion.

For each desired frequency, the program prints out the

variables:

Name Fortran Name Evaluation Formula
w ‘OMEGA

INDQ INDQ
k K (wzmr/EI)k
A LAMDA G/ (EIk)
c KAPPA K/ (EIk>)
Zw W -jwM

Thus, results can be expressed in terms of w or in terms of the

dimensionless frequency parameter . Next, the real and imaginary
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parts of the propagation constants are printed out. Finally,

the program gives the acceleration level, Lﬁ, where

Ly = 10 log (] d(x,w)|?) (I.35)

for bay N (-MJ/2 < N < MJ/2) at &/Af stations within each bay.
This entire process continues over all the desired values of w

as specified in line 27 of the program.

The overall flow of the program is very simply illustrated
in Fig. I.4. The frequency do-loop encompasses all calculations.
Within this loop, the portion labeled MAIN calculates propagation
}, (A b {2

u(p+) u(o+) u(o=)
frequency. The loop labeled X loops over all bays (from -MJ/2 to

constants and the quantities {A } for each
MJ/2) and over all stations within a bay (i.e., for gefo,2],
E=n(At); ne [o,2/AE]). The backsubstitution phase computes ac-

celeration levels at these locations.

The MAIN portion carries out the following steps:

1. ©yprecer g4 are calculated from Egs. I.8.

2. results of step 1 are used to calculate the coefficients of
the characteristic equation for the propagation constants,

Egs. I.14, and this is solved to obtain ul, Hor Hyr M Then

4
the propagation constants are relabeled such that Eq. I.15 is

satisfied.
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INPUTS

<7D

MAIN

D

BACKSUBSTITUTION

OUTPUTS |

FIG.1.4 FLOW CHART FOR COMPUTER PROGRAM
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u

3. For each u, x = e , Fl' F D, b ., c . and dui are

2 73" Tu' Tpi’ Tud
calculated following Eq. I.18, and the Q matrix is assembled.
4. From step 3, g—l is evaluated and the I matrix is obtained
from Eq. I.29c.
5. The system of eight linear algebraic Egs. I.29a is solved,
setting § = 1.
6. If INDQ = 1, 0 is set = 1. If INDQ = 2, Z_ is evaluated
from Eq. I.33 and § obtained from Eq. I.34. The solutions
to Eq. I.29a previously obtained in step 5 are now multiplied

by 8. Finally, {Au
}.

} is evaluated from {Au } =

(p-) (p-)

-~ pu
[es ]{Au(0+)

The backsubstitution phase performs its computations for a given
N and £. First, the following substitutions are made according

to the contingencies indicated at the left hand margin below:

Contingency {a} =

N < o [‘e?u]{Au(o_)}
N=o0,¢&<a {Au(o_)}
N=o0,&>a {Au(o+)}

c<N<P eul(n—p)Aul(p-)
L WP
eU3NAu3(o+)
eU4NAu4(o+)
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N = p, £ <b {Au (p_)}
N=p, £ >Db {AU(P+)}
<« _(n-p)u

N >p [Ce ‘]{Au(p+)}

The substitution for the case 0 < N < p avoids the numerical errors

that would be produced by multiplying {A }, say, by

U (o+)

eulN

euZN ¢
u3N
€ eu4N
¢
where eNul and eNuZ can be very large numbers. Finally, uN(E)

is obtained from

uy (E) = [cosh k&, sinh ki, cos k&, sin k&] [2]{A} (1.36)
and the acceleration level, 10 log, n§|uN(E)|2] is determined.

The computer program, which embodies the theoretical scheme
outlined above, consists of three main parts. The first part cal-
culates, for each given frequency, the propagation constants and
the corresponding wave components. The second part takes account

' of external loads on the rail and determines the coefficients A:?)

for each bay. The final part generates u(x) for desired locations.
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The dynamic properties of rail and fasteners, the fastener
spacing, the locations of the wheels and their input impedance may
be specified as desired. Either an exciting force at the first
wheel of arbitrary spectrum or a wheel-rail roughness excitation
for any desired roughness spectrum may be specified. As all
arithmetic operations are carried out in the complex mode, damping
may be included in any and all of the structural elements. The
output includes both the propagation constants as functions of
frequency and the velocity response of the rail at given frequencies

and locations.

The program has been debugged and run for a number of cases.

A listing follows.
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IMPLIC!T COMPLEX(A=H,0eZ)
___ DOUBLE PRECISION RR,RILCOR,COI o
COMPLEX CSINH,CCOSH,CCHIN,FZW,RDOT
"DATA FL,AsIPIB/(2,5:0,0)001425,0,0303,00,78:0,0)/
DATA FI.RHO.FM MJI/(3,13€e3,0,0),(1,.1979,0,0),(1000.0,0,0),20/
_DATA FDL/(1.25,0,0)/
DIMENSION FMU(4).DMUC4),BMUC4),CMUC4),0M(16),0MI(16),
ey _V(4),DEL(4),EPMUC18) ,GAMMALL6) L4, M(4),CO(64), . _
2 R(B),R1(12),FID(186),RR(B),)RI(8),COR(64),C0I(64)
.nCSINH(Z)ILCEXP(Z)-CEXP(QZ))Iti.OoO.O)
CCOSH(Z)B(CEXP(2)+CEXP(»2))/(2,0,0,0)
CCHIN(Z)BCLOG(Z2+C8QART(Z#2Ze(1,0,0,0)))
FZW(Z,C)aCeZ
e RDOT(ZIRCL 4 00040) o o e e
C.....PARAMETERS
. Em(4,32E9,0,0)
ElsEerl
. FXPR(0,3497,0,0)%((1,0+s0,03°(0,0s1.0))
FXCm(4,729E6,0,0)%((1,0,0,0)=(0,0,1,0))
e FLPB(0,04861,0,0)%((1,0,0,0)2(0,0,38,0)) . e R
G.(6|57555'°oo"((10010.0)'(00001.0))
Coeees s PRINT PARAMETERS INDEPENDENT OF OMEGA
WRITE(3,108) FL,A,I1P,B,E
. WRITE(3,109) FI,RHO,FM,MJ
WRITE(3,112) G,FKP,FDL :
—— _INDGEm2 ___ . . el e e
DO §000 zon-soo.t:ooo.soo
_ OMEGA®CMPLX({FLOAT(IOM),0,0)
WRITE(3,111) OMEGA,INDCQ
. FKa(OMEGASOMEGA#RHO/EI)w#0,28
FLAMDASG/(EI®FK)
. TERME(1,0,0,0)/(EIeFKe®Y) _  _ . — _
FKAPPARFKCHTERM
ZVme(0,0,1,0)%0OMEGA#FM
COM.DMEGAO(; 860E«3,0,0)
Cesses PRINT PAIAMETER! DEPENDENT ON OMEGA
WRITE(3,110) FK'PLAMDA.FKAPPA.ZW.COM
CoeessCALCULATE ALPHA TERMS& . .
FKIs(1,0,0,0)/FK
FKIZIFKIQFKI
FKLasFK#FL
8sCSIN(FKL) A o o
CeCCOS(FKL)
— . _SHeCSINH(FKL) o e o
CHeCCOSH(FKL)
Ati1sFKI2¢(CHe8S«Co8H«FLAMDA/(2,0,0, O)Q(COCH-(i.an 0)))
A128FKI2e(8SHe=8)
ALInFKleSe8SH
A14uFKIa#(CeCH)
. A239FKAPPA/(2,040,0)8(CoCHe(1,0,0,0))eSHeCaSaCH
, A2488+8H
Cososs CALCULATE PROPAGATION CONSTANTS
BT{oA120A24=A 40AL4
BT2IwA239A12+A110A24
BTIsAL{1#A23¢A140A14 ‘
. . JF(CABS(BT2¢BT2/(BT14BT3)) LE, t,0E4)Y GO TO ¢ __ .
FMU(1)eCCHIN(=BT3/BT2)
FMU(2)8(10,0,0,0)
GO 10 2
4 . EP1m=BT2/((2,0,0,0)4BTY) S
: EP2sCSQORT(BT2#BT2=(4,0,0 0)05710813)/((2 0, 0 03*811)

181



FMUCL)sCCHIN(EPLI+EP2)
.. FMU(2)®(10,0,0,0) L R
IF(CAB!!EP!-EP?) .LT. 1.054) FMU(2)2CCHIN(EP1=EP2)
2 FMU(C3)mePMU(Y)
FMU(4)8esFMU(2)
IF(REAL(FMU(1)) ,GT, 0,0) GO TO 3
SAVEsFMU(3)
...... FMUCI)SFMUCLY
FMU(1)=SAVE
3 IF(REAL(FMU(2)) ,GT, 0,0) GO TO 8
SAVEsFMU(4) ’
FMU(4)aFMU(2)
FMU(2)sSAVE
8 WRITE(3,118) . .
WRITE(3,102) FMU
Cisee LOOP FOR EACH MU
DO 9 Ks=i,4
XsCEXP(FMU(K))
FiaCeX
e .. F2uCHe=X .
PJISnFKAPPA/(? 0, 0 0)#X
SMF3YsS=F3
F23isF24F)
DMU(CK)ISFi#(Fi#F2+SHeSMF3) + SaF2)
DMU(K)®(1,0,0,0)/DMU(K)
e~ BMU(CK)BDMU(K)#(S#(SHSMFIaSHUFI)aF 14 (F28SMFI+FLe
1 (SHeS8+F3)))
CMU(K)SDMU(K)#(F1a(SHe(SHeS+F3)uF2482)+S54F248MF3)
DMU(K)meDMU(K)@(F24(F1oSMIF3¢F23)+SHe(S#SMF3e8SH#F3))
S CONTINUE
CeeeeoFORM OMEGA MATRIX STORED AS VECTOR BY COLUMN
- DO §0 Kmy,d
KKm4#(Kei)
OM(KK+1)m(1,0,0,0)
OM(KK+2)sBMU(K)
OM(KK+3)mCMU(K)
OM(KK+4)sDMU(K)
10 CONTINUE .
€.+ CALCULATE INVERSE OF OMEGA MATRIX
DO 41 K=i,16
11 OMItK)IOM(KJ
CALL CMINV(OMI,4,D,L,M)
IF¢(D ,EQ, (0,0,0,0)) TYPE 113,D
CassasCALCULATE DEL VECTOR
FKARFK#A
SAaCSIN(FKA)
CAnCCOS(FKA)
SHASCSINH(FKA)
CHASCCOSH(FKA)
.. V(1)e8HA = = . o
V(2)m=CHA
V(3)u=SA
V(4)sCA
CALL CMPRD(OMI,V,DEL,4,4,})
DO 12 K=1,4
12  DEL(K)®=(0,%5:0,0)%DEL(K)
CovessFORM THE DIAGONAL&ELEMENTSONLY MATRIX EPMU
Coaee o AND THE IDENTITY MATRIX FID
INDEXP=O
DO {3 Kmi,4
FID(4#(Kel)¢K)m(1,0,0,0)
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EXPORCMPLX(FLOAT(IP),0,0)eFMU(K)
_____IFCABS(REAL(EXPO)) ,LT, 37.,0) GO 70 83
INDEXPuY
.. EXPOmCMPLX(SIGN(37,0,REAL(EXPD)),0.0)
13 EPMU (49 (Kwi)+K)SCEXP(EXPO)
CeoeesCALCULATE GAMMA MATRIX
FKRasFKeB
.. SBRCSINCFKB) - . e L
CBWCCOS(FKB)
SHReCSINH(FKB)
CHBaCCOSH(FKB)
V(i)a8SHB
V(2)e=sCHB
—e- VLY )mw8R o e e
V(4)sCB
CALL CMPRD(OMI,V,BMU,4,4,1)
V(1)sCHB
.V(2)m8HB
V(3)sCB
e N (4)IRSB e .
CALL CMPRD(BMU ' 0MI.4:1 4)
CALL CMPRD(OMI,OM,GAMMA,4,4,¢)
DO §4 Kwi,$6
14 - GAMMA(K)@a=FID(K)®(0,0,1,0)%OMEGASF2ZW(ZW,TERM)/
1 (2.0,0,0)%GAMMA(K)
CoeeeesSET UP COEFFICIENT MATRIX. .
C0(3)8(1,040,0)
CO(12)®(3,0,0,0)
CO(82)m(»1,0,0,0)
CO(62)m(=1,0,0,0)
CALL CMPRD(GAMHA EPMU,OMI, 4,4,4)
DO §1S Ke3,6 _ = _ e
DO 18 KKsyi, 4
18 CO(au(Kel)+KK)SOMI (44 (K=])e+KK)
DO 16 K=m3,6
DD 16 KK'!.
16 CO(O*(K-I)#KK)IFID(4'(K-3)+KK-4)
DO 17 K=i,64 . e
COR(K)IDBLE(REAL(CO(K)))
17 COYI(K)uDBLE(AIMAG(CO(K)))
CoeoeeeSET UP RIGHTeHANDSIDE
DO 18 KuSs,8
10 R(K)mDEL(K=4)
DO 19 Key,8 e e e
RR(K):DBLE(REAL(R(K)))
19 RI(K)mDBLE(CAIMAG(R(K)))
Cones SOLVE SYSTEM
CoeosRESULT IS STORED IN RHS VECTOR R
CALL CGELG(RR,RI,COR,CO0I,8,5,1, on-:s.x:n)
. IF(IER  NE, 0) TYPE $100,IER _ . __ . e
DO 20 Ks=si,®
20 R(K)BCMPLX(SNGL(RR(K)),»SNGL(RI(K)))
DO 21 K=3,10
21 Ri(K)sR(K=2)
IF(INDEXP ,EQG, 1) GO TO 23
e DD 22 KBi,4 - ) - e
22 V(K)SR(K+2)
CALL CMPRD(EPMU,V,BMU,4,4,1)
GO TO 24
23 BMUCY)CEXP(CMPLX(FLOAT(IP),0,0)#FMU(C3))®RL(TY)
BMU(4)sCEXP(CMPLX(FLOAT(IP),0,0)8FMUC4))I®RLI(S)
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COEFFRe (GAMMA(9)®GAMMA(14)wGAMMA(L3)#GAMMA(10))
_ BMU(1)=COEFFeBMU(3)
BMU(2)sCOEFF#BMU(4)
Cooes s CALCULATE OR SPECIFY G DEPENDING ON VALUE OF INDG,
CeoeeoslF INDGmy, SET Qmiy, IF INDQGm2, CALCULATE @,
¢ GO TO(30,31),INDC
30 Qm(1,0,0,0)
. GO TO 33
seeesCALCULATE DRIVING POINT IMPEDENCE
t V(1)sCHA
V(2)uSHA
V(3)=CA
V(4)uSA
CALL CMPRD(V,OM,CMU,1,4,4)
DO 32 K=i,4
32 V(K)BR1(K+8)
CALL CMPRD(CMU,V,DMU,1,4,1)
DELTAR4(0,0s1,0)*OMEGASTERM#DMU (1)
zR.(ioO'OQO)/DELTA
. ANTERM# (ZR#2W/ (ZR+ZW))#RDOT (OMEGA)
Coese,MULTIPLY RESULTS OF SOL’N OF SYSTEM OF EQ’NS BY ©
33 DO 34 Kmy,12
IF(K ,LE, 4) BMU(K)mQ#BMU(K)
34 Ri(K)mQu#R1(K)
Coeses PRINT RESULTS
_ _WRITE(3,101)
WRITE(3,102) (R1(K),K=mi,4)
WRITE(3,103)
WRITE(3,102) BMU
WRITE(3,104)
WRITE(3,102) (Ri1(K),Ku5,8)
__ WRITE(3,108%)
WRITE(3,102) (R1(K),Km9,12)
CoeeesBACK SUBSTITUTION, CALCULATE FOR Nma=MJ/2 TO MJ/2
CoesesAND FOR XIm0 TO FL IN STEPS OF FDL
KMAXEMJ+1
DO 70 Kmi,KMAX
NeesMJ/2+(Kel) C
IF(N ,GT, O ,AND, N LT, IP) GO TO 40
IF(N ,EQ, 0 ,OR, N ,EQ, IP) GO TO 43
DO 3% KKmi,4
IF(N ,LT, 0) EXPOsCMPLX(FLOAT(N),0,0)sFMU(KK)
IF(N ,GT, IP) EXPOWCMPLX(FLOAT(NeIP),0,0)#FMU(KK)
~ IF(ABS(REAL(EXPC)) ,GT, 37,0) EXPOSCMPLX(SIGN(37,0,
1 REAL(EXP0)),0,0)
3s EPMU(4#(KKw1)+KK)RCEXP(EXPO)
IF(N ,GT, IP) GO TO 38
DO 36 KK=mi,4
36 V(KK)BRi (KK+8B)
“37_. _ CALL CMPRD(EPMU,V,CMU,4,4,1)
GO TO 43
38 DO 39 KKmi,4
39 V(KKImRY (KK)
GO TO 37
40 DO 41 KKsi,2
.. EXPOSCMPLX(FLOAT(NsIP),0,0)#FMU(KK)
IF(ABS(REAL(EXPO)) ,GT, 37,0) EXPOSCMPLX(SIGN(37,0,
{ REAL(EXP0)),0,0)
41 CMU(KK)SCEXP(EXPO)#BMU (KK)
DO 42 KK=3,4
EXPOSCMPLX(FLOAT(N),0,0)#FMU(KK)

¢
3

184




A

!P(All(lllb(ll’?i) T, 37,0) EXPOICMPLX(SIGN(J7 0,
100,90) - -

_JA REAL(EXPOQ) S
41 CHUtIl)iEI!P!IXPO)CR:(KK¢4)

C.....CALCULA!I WN(XI) AND STORE IN VECTOR CO
MAXXI@(PL/FDL+(0,8,0,0)) ¢!
DO 60 KEmi,MAXXI
XIICHPLX(FLOAT(KE-i)OREAL(FDL);0.0)
e . FKXnFKeXY . B
IF(N ,NE, O .AND. N +NE, IP) GO TO 5%
Ir(yn ,gQ, IP) GO TO 47
IF(CABS(XI) ,GT, CABS(A)) GO TO 45
DO 44 KKuj,4 ,

44 CMU(CKK)IBRL (KK+8)

. .. GO.TO 83 _
45 DO 46 KKmi,4
46 CMU(CKK)aR] (KK+4)
GO TO S1i
-47 IF(CABS(X1) ,GT, CABS(B)) GO TO 49
DO 48 KKm}i,4
48 CMU(KK)mBMU(KK)
GO TO S
49 DO S0 KKmsi,4
S0 CMU(KK)=sRY (KK)
st V({)sCCOSH(FKX)
V(2)sCSINH(FKX)
~--¥(3)eCCOS (FKX)
V(4)SCSIN(FKX)
CALL CMPRD(V,0M,DMU,1,4,4)
CALL CMPRD(DMU,CMU,V,1,4,1)
CO(KE)®™(30,0,0,0)#CMPLX(ALOGI0(REAL(OMEGA) #ud#
i CABS(V(1))##2),0,0)

80__ _CONTINUE = o

CoesssPRINT WN(XI) VALUES FOR SPECIFIED N
WRITE(3,106) N
WRITE(3,102) (COCKK),KKs{,MAXXI)
70 CONTINUE
c.....zzao THE VECTORS R,C0, AND CYCLE FOR NEXT OMEGA
... .. DD BO Km1,64 )
TF(K LE, 8) R(K)®m(0.0, 0.0)
CO(K)®(0,0s0,0)
80 CONTINUE
1000 CONTINUE
STOP
100 FORMAT(’ IER = *,IS)
101 FORMAT(® AMU(P+)*)
102 FORMAT((4(E15,4)))
103  FORMAT(® AMU(Pe)’)
104 FORMAT(® AMU(O4+)*)
108 FORMAT(® AMU(Oe)®)

-106__. FORMAT(’* N ® *’,15) -

107 FORMAT(2F10,0,18)
108 FORMAT(iH1,°L & *,2E10,4,’ A = *,2E10,4,° ¢ s *,
1 1%,/," B = *,2E10,4,° E » *,2E10,.4,/)
109 FORMAT(" I = °,2E10,4,° RHO ® *,2E40,4,/,
1 * 71 s ',2510.4.’ MJ = *,18,/)
110. _FORMAT(’ 8 ®»’,2E10,4,” LAMDA a *,2E10,4,/,
{ * KAPPA = '02510 4,’ IW s *,2E10,.,4,/,
2 ¢ COMEGA = *12E10,4,7/7) .
111 FORMAT(1HO0,//,* OMEGA = *,2E10,4,° INDQ = *,15,//)
112 FORMAT(’ G =& *,2E10,4," KAPPA’’ = ’,2E10.4,/,
1 * L INCREMENT ® *,2E10,4,//)
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113 FORMAT(’ OM MATRIX IS SINGULAR, DET ® *,2E10.4,/)
114 FORMAT(’ TYPE IM OMEGA IN COMPLEX FORMAT AND INDQG*,/)
118 FORMAT(® MU*)

END

SURROUTINE CGELG(RR,RI,AR,AI,M,N,EPS,IER)

C.seeoCGELG SOLVES A GENERAL SYSTEM OF SIMULTANEOUS

€.e0e LINEAR EQ’NS WITH COMPLEX COEFFICIENTS AND RHS

Cossse BY GAUSSIAN ELIMINATION WITH COMPLETE PIVOTING,

Cyeee,THE COMPLEX COEFFICIENTS AND RHS HAVE DOUBLE

C,.0ss PRECISION REAL AND IMAGINARY PARTS,

C...0 RERR4ISRI IS THE MXN MATRIX OF RHS (DESTROYED),

CuseesON RETURN R CONTAINS THE SOLUTION,

Cuvess ANAR$ISAI 1§ THE MXM COEFFICIENT MATRIX (DESTROYED),

CossssEPS IS THE RELATIVE TOLERANCE FOR TEST ON

C.ese,LO8S OF SIGNIFICANCE (10E=6 TO 30E=7 SUGGESTED FOR SINGLE

Cosses PRECISION, 10E=14 TO 10E=16 FOR DOUBLE PRECISION),

CuseseSET ON INPUT,

CoesesJER IS THE RESULTANT ERROR PARAMETER (0 INDICATES

C.ves.NO ERROR, =1 INDICATES M<i OR A PIVOT ELEMENT IS§ 0,

CovsesK IS A WARNING DUE TO A POSSIBLE LOSS OF SIGNIFICANCE

Coeseo AT ELIMINATION STEP Kei),

Cuuve MATRICES ARE ASSUMED TO BE STORED COLUMNWISE

C,.,.,WITH REAL AND IMAGINARY PARTS SEPARATED,

IMPLICIT DOUBLE PRECISION(A®H,0e2)

DIMENSION AR(1),AI(1),RR(1),RI(1)
DMULTR(X1,¥1,X2,)Y2)8X1#X2=Y14Y2
DMULTI(X1,Y1,X2,Y2)mX18Y2+X24Y1
DIVR(X$,Y1,X2,)Y2)m(X1#X24Y19Y2)/(X2##2+Y24%2)
DIVI(X1,Y1,X2,Y2)m(X2#Y1eX1#Y2)/(X2¥42+4Y2442)
IF(M) 23,231

C.veesSEARCH FOR GREATEST ELEMENT IN MATRIX A

1 IER=O
PIVR=0,DO
PIVI=0,DO
MMsM#M
NMsN#M
DO 3 Lml,MM
TBRwAR(L)

TBIaAI(L)
IF(DSQRT (TBR##2+TBI##2)«DSQRT(PIVR##24PIVIa®2)) 3,3,2

2 PIVRaTBR
PIVIaTBI
IsL

3  CONTINUE
TOLRREPS#PIVR
TOLISEPS#PIVI

C.seesACIINAR(I)¢I®AI(I) IS PIVOT ELEMENT,

CouseesSTART ELIMINATION LOOP,

LSTel

© . DD 17 Ksj,M

Coves TEST ON SINGULARITY,

IF(PIVR ,EQ, 0,DO ,AND, PIVI ,EQ, 0,D0) GO TO 23

4 IF(IER) 7,57

: IF(DSQRT(PIVR##24PIVI##2)=DSQRT(TOLR##2+TOLI##2)) 6,6,7

[ IERsKe{

7  PIVIRsDIVR(1,D0,0,D0,AR(I),AT(])
PIVII=DIVI(1,D0,0,D0,AR(I),AX(I)
Je(I=1)/M
IsleJeMeK
JaJel ek

CeseasleK 1S ROWSINDEX, J+K COLUMN=INDEX OF PIVOT ELEMENT,

)
)
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C.....PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RHS,
e DO B LWK,NM,M. R —_— e e
LLnLe+l
. TBRaDMULTR(PIVIR,PIVII,RR(LL)Y,RI(LL))
TBI-DMULTI(PIVIR:P!V!I;RR(LL);RI(LLJ)
RR{LL)®SRR(L)
RI(LL)®RI(L)
i .RR{L)®TBR e
8 RI(L)STAI
Cooes s ELIMINATION TERMINAT!D.
- IF(KeM) 9,18,18
C,...,COLUMN INTERCHANGE IN MATRIX A,
LENDELST+MeK
w....,,,..._IELL..IJ 2,312,800
10 IImJeM
- DO 3! LaLST,LEND
TBRsAR(L)
TBIsAI(L) _
LLaL+II :
-_—AR(L)mAR(LL). _ __ : . el
AI(L)SAI(LL)
AR(LL)wTBR
11 AI(LL)wTBI
C.....RDW INTERCHANGE AND pIVOT ROW REDUCTION IN MATRIX A,
12 DO 13 LeL8ST,MM,M
- LLmLeI
TBR-DMULTR(PIVIR.PIVII:AR(LL)oAItLL))
TBIaDMULTI(PIVIR,PIVII,AR(LL),AI(LL))
AR(LL)SAR(L)
AI(LL)®AI(L)
AR(L)=TBR.
13 AI(L)sTBI e
CuvessSAVE COLUMN INTERCHANGE INFORMATION
AR(LST)=DBLE(FLOAT(J))
AI(LST)s0,D0
Cosos ELEMENT REDUCTION AND NEXT PIVOT SEARCH,
PIVRa0,DO
e EI_\LIUQ.D_D e e e
LSTuLST+|
Juo
DO ¢6 II=LST,LEND
PIVIRa=sAR(II)
PIVIlseAI(II)
e ASTRYIX®M
JeJel
DC 1S LsIST,MM,M
LLuLeJ
AR(L)SAR(L)+DMULTR(PIVIR,PIVII,AR(LL),AZ(LL))
AI(L)-AI(LJ#DMULTI(PIVIR.PIV!I.AR(LL)aAI(LL))
— . - TBREARCLY _ . -
TBIsAI(L)
IF(DSQRT(TBR##2+TBIw#2)=DSQRT(PIVR##24PIVIN®n2)) {5,18,14
14 PIVRaTBR
PIVIsTBI
Isl
18  _CONTINUE . . I e
DO 16 L=sK, NM M
LLalLeJd
‘RR(LL)=RR(LL)Y+DMULTR(PIVIR, PIVII,RR(L), RI(L))
16 RI(LL)-RI(LL)#DMULTI(PIVIR;PIVII RRCL)Y,RI(L))
17 LSTuLSTeM
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T Caaes s END OF ELIMINATIOUN" LOOP, T o
€,000:BACK SUBSTITUTION AND BACK INTERCHANGE.
18 IF(Mey) 23,22,19
19 ISTsMMeM
LETeM+}
DO 21 Is2,M
I1lulSTe=]
ISTsIST-LST
LeISTeM
LeDABS(AR(L)+0,5D0)
DO 21 Js1I,NM,M
TBReRR(J)
TBIsRI(J)
LLsJ.
DO 20 K-IST'MM M
LLsLLe+}
TBReTRReDMULTR(AR(K),AY(K),RR(LL),RI(LL))
20 TBIuTBI=DMULTICAR(K),AI(K),RR(LL),RI(LL))
KnJeL
_ RR{J)mRR(K)
RI(JISRI(K)
RR(K)®TBR
21 RI(K)=sTBI
32 RETURN
C,eeesERROR RETURN
2)  1ER=ms{
RETURN
END
SUBROUTINE CMPRD(A,B,R,N,M,L)
CyeoesCMPRD COMPUTES THE COMPLEX MATRIX PRODUCT
ConesosA(NXM) X B(MXL) ® R(NXL) WHERE THE MATRICES ARE
ChaasssSTORED COLUMNWISE AS VECTORS, 7 _
IMPLICIT COMPLEX(AeH,0=2)
DIMENSION A(1),B(1),R(1)
IR=0
IKueM
DO 10 Ksi,L
IKsIKeM .
PG 10 Jwi,N
IRnIR+}
JIsJeN
IBalK
R(IR)'(0,0'0.0)
DO_10 Isi,M
JIaJI+N
IBaIB+}
10 R(IR)=R(IR) ¢ A(JI)#B(IB)
RETURN
END
_ SUBROUTINE CMINV(A,N,D,L,M)
C.....CMINV INVERTS A MATRIX WITH COMPLEX "ELEMENTS
CaseedBY GAUSS«JORDAN METHOD,
C....,A IS THE INPUT MATRIX, DESTROYED IN COMPUTATION
Ceness AND REPLACED BY THE INVERSE,
Cvesae,N IS THE ORDER OF A,
CoosssD I8 THE RESULTANT DETERMINENT,
Cenesesli AND M ARE WORK VECTORS EACH OF LENGTH N
IMPLICIT COMPLEX(AwH,0=2)
DIMENSION A(C1),LC1),M(1)
CoeeesSEARCH FOR LARGEST ELEMENT,
D.(ICOIOQO)
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A

NKssN
.. DD 80 Xmi,N = _ . e
NKaNK+eN
L(K)sK
M(K)sK
KKasNK+¢X
BIGABA (KK)
- —-DD 20 J@K,N _ ___ .
IZaN#(Jwl)
DO 20 IsK,N
IJalZ+l
10. IFICAB!(BIGAJ-CABB(A(IJ))) 18,20,20
18 BIGA-AtIJ)
e _L(K)EY e
M(K)=nJ
.20 CONTINUE
Cesee INTERCHANGE ROWS
JeL(K)
IF(J=K) 35:35:25
4% ____KlsKeN . e e
DO 30 Ill N
KIaKI¢N
HOLDseA(KI)
JIaKIeKeJd
A(KI)=A(JI)
30 . A(JI)SHOLD B —
Ceeses INTERCHANGE COLUMNS :
35 IsM(K)
IF(IeK) 45,45,38
38 JUPaN#(ley)
DO 40 J=my,N
e IK@NK®S
JIsJPedJ
HOLDs=A {JK)
A(JK)BA(JI)
40 A(JI)sHOLD
Ceaoes DIVIDE COLUMN BY MINUS PIVOT (VALUE OF p1vVvOT
Cesess s ELEMENT I8 CONTAINED IN_ BIGAY, _ e e
43 IF(BIGA ,NE, (0,0,0,0)) GO TO 48
46 Dm(0,0,0,0)
RETURN
IF(IeK) 50,55,50
30 _IKmNKel e e e e
A(IK)IA(IK)/(-BIGA)
-1 CONTINUE
CooeeREDUCE MATRIX
DO &8 Imi,N
IKaNKe+]
IJuleN
DO &8 J=mg,N
IJeIJeN
. IF(I=K) 60,68,60
60 IF(JeK) 62,68,62
82 KisIJeleK . e
ACIJ)=HOLD®A(KJI) +A(1J)
6s CONTINUE
CoeesesDIVIDE ROW BY PIVOT
. . KJmKeN
DO 78 Jmy,N
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KJOKJsN
_____ _IFtJeK) 70,778,770
70 A(KJ)sA(KJ)/BIG
8 CONTINUE :
Coese s PRODUCT OF PIVOTS

_ DeDeBIGA
Ceoss sREPLACE PIVOT BY RECIPROCAL
e ALKK)®(,0,0,0)/BIGA
80 CONTINUE
Ceoseos FINAL ROW AND COLUMN INTERCHANGE,

KsN :
100 Ke(Kel)

IF(K) 150,150,108
108 IsL¢K) = . . . .

IF(l=K) 120,120,108
108 JOuN#(Ke1)

JREN#(I=1)

PO 110 Jmi,N

JKsJQeJ

...... HOLD®A(JK) .
JIaJReJ
A(IK)m=A(JI)

110 A(JI)sHOLD
120 JeM(K)

IF(J=K) 100,100,128
128 __KlsKeN

DO 130 I=y,N

KInKI+N

HOLD®A(KI)

JInKImKeJ

A(KI)mwA(JI)

130 A(JI)sHOLD

GO TO 100
180 RETURN

END
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I.1.3 Computational Results

The first computational result which we present has a
bearing on the effects of multi-wheel interactions. The values

of parameters are as follows:

Case 1:

o
"

2 ft, a=1ft, p=2,Db =1 ft

30 x 10° 1b/in?, m (o ) = 34 1b/ft,

I = 40 in", B_ = EI = 8.33 x 10° 1p £t?, n, =0

tr
"

G =10, K= .7 x 105 1b/in., = 0.001

g
This case corresponds to fasteners having a linear stiffness such

that the resonance of rail on fasteners is at 100 Hz. No

torsional stiffness was assumed. The case was run both with and
without the second wheel, taking its impedance to be - jwM with
M = 1000 1b. In both cases a force excitation was imposed at the

location of the first wheel.

Figure I.5 shows the resulting propagation constants as

functions of the nondimensional frequency parameter

3

Q = wo/-E = (1.29 x 10°°) w

It is seen that the wave component corresponding to H, is rapidly
attenuated, while M, represents the propagating part of the

solution.

The case without the second wheel can be easily compared to
analytical solutions from Chapter 2.3 for a continuous support
model. The continuous and discrete fastener models should agree
for frequencies much lower than the frequency at which the bending
wavelength is twice the fastener spacing (~ 1200 Hz). On this
basis the computer solutions were found to agree quite well with

the continuous model.
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The
the second
(159 Hz).
shows that
position.

resonance,

point impedance of the rail.

nearly rigid pin support.

real parts of the displacement phasor with and without
3
10

The plot for the case including the second wheel mass

wheel are shown in Fig. I.6 for w = rad/sec

the displacement is nearly zero at the second wheel

This is not surprising since above the rail-fastener
the wheel impedance is much larger than the driving

Thus,

The computer calculations show that

the second wheel acts as a

the transmission of bending waves by the loading point of the

second wheel is quite high.

Thus, a large buildup of vibration

between truck wheels due to reflections from the wheels is not

expected.

We now present a second case which is more characteristic

of the rail and fastener on the MBTA Red Line Anderson Bridge.
Case 2

& = 2.5 ft, a = 1.25 ft, p = 3, b = .75 ft

distance between wheels = 7 ft

E = 30 x 10° 1b/in?

- . 4 - 6 2 -

I =65 in", BP = 13.54%4 x 10~ 1b ft°, nr = 0.1

m, = 38.3 1b/ft, X = .517 x 10° 1b/in., ne =0

G = 7.89 x 106 1b-in

The values
115 rail.

rail fastener resonance at 230 Hz.

for rail moment of inertia and density are for RE
The fastener stiffness and spacing used here give a

At the time this case was

run, the fastener properties were intended to be those of the

Liberty fasteners used on the Anderson Bridge.

work we estimated the resonant frequency to be 275 Hz.

in later
Thus, the

However,

case presented here does not correspond exactly to the case
studied in Section 4.2, although we expect the general results to

be applicable to both cases.
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On the Anderson Bridge, the fasteners are 15-1/2" long.
Thus, the fasteners give a torsional stiffness approximately
equal to KL2/12, where L is the fastener length. The damping
loss factors for the rail and the fasteners were set to provide
reasonable correspondence between measured data and the predicted
rate of attenuation with distance from the excitation point. Al-
though the damping is actually associated with losses in the rail
fasteners, we have accounted for it by endowing the rail with a
loss factor of 0.1. As discussed in the next section, a better
model would allow the fastener damping loss factor to be frequency
dependent. However, in its present form the computer program does
not allow the damping loss factors to be frequency dependent.
Finally, a mass impedance of - jwM with M = 1000 1bs is again used
for each of the two wheels, and the first wheel excites the rail
through a wheel-rail roughness velocity of unit magnitude.

Figure I.7 shows the propagation constants in this case.

One propagation constant corresponds to a rapidly attenuated
near~-field while the other represents a propagating wave attenua-

ted only by damping. As in the previous case there is no non-
propagating band of frequencies above the rail-fastener resonance.
In fact, calculation of the propagation constants through the
continuous model, see Chapter 2.3, yields results nearly
identical to those presented here.

Figures I.8 and I.9 show the acceleration level for the
rail, 10 log [|ﬁ|2] plotted versus x. As might be expected,
the propagation away from the wheels shows a near-field dependence
for frequencies below the rail fastener resonance. Above this
frequency, there is only attenuation due to damping. The large
drop-off near the second wheel is due to its large impedance. 1In
reality this drop-off will not occur since the complete solution
is the sum of the present one and the rail response due to direct
excitation by the second wheel with the first acting as a passive
load. Furthermore, it should be noted that at the higher fre-
quencies the rail acceleration shows only a small scale periodicity
reflecting the periodic variation of support conditions. Thus,
it can be expected that rail vibration will be little affected
by the relative position of wheels and fasteners.
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In the above cases, a non-propagating band above the rail-
fastener resonance was not found. Thus, in this respect the
continuous and discrete models agree. However, in general, the
existence of non-propagating bands is not immediately clear.

The situation can be sensitive to the ratio of the fastener
stiffness to the bending rigidity of the rail, particularly at

the frequency at which the bending wavelength is twice the
fastener spacing. To check the sensitivity to fastener stiffness,
Case 2 was run again, increasing the fastener stiffness by a
factor of ten. The propagation constants are shown in Fig. I.10.
Here, one of the propagation constants, whose real part was of the
order of the damping in Case 2, now shows a hump between 5.5 x 103
and 8 x 103 rad/sec. This represents a non-propagating band in
the relatively narrow frequency range betweenﬂlgpo and v1300 Hz.

From these results we can conclude that for typical rail
and fastener properties, the discreteness of fasteners will not
appreciably affect the qualitative features of rail vibration.

As a result of these investigations, we can, in summary ,

draw the following conclusions.

(1) Vibration buildup between wheels of a truck due to
multiple reflections from the wheels does not occur.
The effect of one wheel on rail response to direct
excitation by another wheel is essentially that of a
rigid pin support.

(2) For typical rail and fastener properties there are no
non-propagating frequency bands above the rail-fastener
resonance frequency. This means that the large attenuation
rates observed may not be explained by wave propagation
effects due to the periodic nature of rail fastening.

(3) The wheel positions relative to fastener locations do
not significantly affect rail vibration.

Hence, on the whole, the continuous elastic foundation
model of rail fastening is validated, and we recommend use of
this simple model in predicting elevated structure noise.
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I.2 A Refined Model for Rail Damping

A configuration typical of resilient direct fixation
fasteners is shown in Fig. I.1l. The fasteners consist of a
rubber pad upon which the rail rests and two rubber pads covering
the top of the rail foot. These pads are joined by steel cover-
ing plates and the whole assemblage is bolted to the supporting
structure, as shown. Other resilient fasteners may use different
resilient materials and slightly different designs. The only
variables of importance in predicting rail vibration are the pad
stiffness and damping. It is reasonable to assume that the
portion of the fastener which is most effective in both rail
support and in the dampihg of rail vibrations is the section of
pad immediately below the rail base, as shown in Fig. I.12. In
the following calculations, the fastener stiffness is taken to be
essentially the stiffness of this pad. The notations to be used
for pad dimensions are indicated in the figure.

To calculate the attenuation of raii vibration due to
damping we assume the fastener to be represented by a continuous
visco-elastic foundation, as was done for the simple model of
Chapter 2.3. The stiffness of the foundation per unit length,
Ky is given by

\ K
K, = — (I.37)

where K is the stiffness of a single fastener and % is the
fastener spacing.. As in Chapter 2.3 the damping of the fastener
will be included by letting the fastener stiffness be complex,

K = K(L+i ng) (I.38)

where Ne is the fastener damping loss factor. However, in this
Section we will allow the loss factor and stiffness to be
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frequency dependent and we will include the effect of shear
deformations in the fastener on the damping. We will assume that
the frequency of vibration is well above the fundamental

resonance frequency of the rail on its fasteners, W, where
w = (I.39)

and m, is the rail mass per unit length. The damping loss factor
given in Eq. I.38 relates the time average power dissipated in the
fastener, wf,diss » to the time average energy stored in the
fastener, Ef,

wf,diss w ng Bf (I.40)

where w is the radian frequency of vibration. By analogy an
effective damping loss factor for the rail and fasteners together,
N.gf » Can be defined such that

We daiss * Wy ,diss w N pg(Ee + EJ) (I.41)

where Wr diss is the time average power dissipated in the rail and
b

Er is the energy stored in the rail. With this definition the

rate of decay of vibration waves traveling down the rail is [17 ]

A, = 13.8 Ness dB/wavelength (I.42)

The decay in dB/unit length of rail is found by dividing AA by the
wavelength. This gives

A = 2.16 n (I.43)

eff n
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where km is the wavelength of the waves, k =2 w/X. For the

simple model considered in Chapter 2.3 the effective loss factor
is given by

2
w
T .

for w >> W, (I.45)

where the loss factors of the fastener, Nes and the rail, Ny
are considered for the time being to be frequency dependent.

The effect of allowing the loss factors and fastener stiff-
ness to be frequency dependent is to change both the effective
damping loss factor and the wavenumber. However, in the work to
follow we will take the frequency dependence to be sufficiently
small that the wavenumber is unaffected. We will modify Eq. I38
so that the rail resonance frequency is the solution to the
equation

ol = (I.146)

where Kl(wr) is the effective fastener stiffness per unit length
of rail at W, Both of these approximations are valid for
typical rail fasteners. Finally, the effective damping loss
factor will be found using Eq. I41. The following dissipation
and energy storage mechanisms will be considered for the case in
- which a vibration wave of the form

-i(kmx-wt)

u(x,t) = U e (I.47)

is traveling down the rail.
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Vertical compression of the pad: When the rail is loaded
by the train wheels, it is pressed firmly to the supporting

fastener pad. Thus, a "no-slip" condition can be assumed to hold
between rail and pad. The "no-slip" condition requires that the
displacement of the upper surface of the pad equal that of the
rail base. Primarily, this means that the pad undergoes a

. s . . . A =1(kpX-wt)
periodic vertical displacement of magnitude U e .

The
time average mechanical energy in the fastener due to this verti-

cal motion, is simply

Ef,compr.’

.1 12
Ef compr. - 3 X |U| (I.48)

Shear of the'pad: There is a shear deformation of the
fastener pad due to rotation of the rail. The geometry is as
indicated in Fig. I.13. To estimate the magnitude of this effect,

we assume that the shear is uniformly distributed over the width

of the pad. This resulting strain energy in the fastener,
Ef,shear’ 18
L
P

2
G_d_ 2 d (T.49)
p 9 % X vy (x)

N

Ef,shear

[+

where Gp is the shear modulus of the pad material. The shear angle,
Y , is related to the angle of flexure, B, by

a . a n
Y - B = = dhad = -1 k — U (I-SO)
d d d
p %% p

Hence, the time averaged mechanical energy,
the fastener due to shear of the pad is

Ef,shear’ of
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~ 1 a2 .2 ~2
Ef,shear 2 5 b Ip (dp) kU] (I.51)

where it has been assumed that Y(x) is constant over the length,

i.e., not a function of x, of the fastener.

Now we can calculate the energy dissipated by the above
two modes of deformation of the pad for each fastener, wf diss."
5 .
In Eq. I.40 we set

Ef N Ef,compr. * Ef,shear (I.52)

If we now let & be the spacing between fasteners, the average
energy dissipated in the rail per fastener is

(I.53a)
r p

where

(I.53b)

From Eq. I.4l the effective damping loss factor for the rail
and fasteners together is given by

G n B
2 p a2 r 4 "r
1 + km X dp Zp LP (d—) + nf km KQ,
N ee/ne = P (I.54)
eff 7t 2 & a.2 . .4 B, |
1 + km K dp Q’P LP (d—P-) + km q

where ng is the damping loss factor of the fastener pad material
(assumed to be the same for shear and compression).
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For typical fastener parameters and rail cross sections, terms in
Eq. I.sy involving Gp are negligible. Thus, the effective damping
loss factor may be calculated by assuming only simple compression
of the pad,

n
1+ 2 (E k;) (I.55)

Now we consider the frequency dependence of K, and n e
We note that the elastic modulus for many viscoelastic materials

display a frequency dependence that gives

® 1/2
K, = K (—) (I.56a)
L 21 w,
w /2
r

where Kl and nfl are values at w equal W, s and w is not zero.

1

As an example we consider the rail (RE 115) and rail fast-
eners used on the Anderson Bridge of the MBTA. The fastener
stiffness is such that the rail/fastener resonance frequency is
275 Hz. The butyl fastener pad damping loss factor at 275 Hz is
estimated to be 1.3. The rate of vibration attenuation for the
rail for these parameter values is shown in Fig. I.14. Also shown
are attenuation rates obtained from measured data and those
obtained by taking the fastener stiffness and damping to be
frequency independent. It is seen that the relationships of
Eq. I.56 yield reasonable agreement with the data.
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1.3 Effect of Shear Deformations in the Rail

The simplified model developed in Chapter 2.3 assumes that
the rail vibrations are in the form of pure bending. For this
case the phase velocity for free bending waves is given by

w
et o= r (I.57)

where Br is the bending stiffness of the rail and m, is its mass
per unit length.

Parameter values for a RE 115 rail cross-section are

B, = 2 x 10° 1b-in.?

find

and m, = 115 1b/yd. Using these values we

c. = 146 /F LI for RE 115 rail (I.58)
b sec

where f is the frequency in Hz. The wavelength of the bending
vibration, Ab’ is simply

c
= b
A - f

b ft for RE 115 rail (I.59)

146
%3

At high frequencies, shear deformation of the rail web becomes a
significant factor. Rather than being a pure bending motion the
rail vibration is due to both bending and shearing of the rail

" cross-section. To first approximation we can determine the effect
of web shear by computing an effective shear wavespeed based on
the shear stiffness of the web and the mass of the total rail cross-

section.
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(I.60)

where Cg is the effective shear wavespeed, G is the shear modulus
of the rail material, Aw is the cross-sectional area of the rail
web and m, is the mass per unit length of the rail. For RE 115
rail we find

- ft .
cg = 5720 seo for RE 115 rail (I.61)

At high frequencies, the phase velocity for vibration waves in

the rail will equal Ccq rather than cb.* An analysis for the

intermediate frequencies gives

C [e]
(92 - 1 [yt 1 (b2 (1.62)
cb 2 cS 2 cS

where ¢ is the phase velocity. From Eq. I.62 we note that the
effect of shear deformation is significant only for frequencies
above 1500 Hz. Rail vibration at these frequencies is at a
comparatively low value and does not contribute significantly to
the A-weighted radiated noise levels from the rail or to the
vibrational energy transmitted to the track structure. Therefore,
we can ignor the effects of shear deformation with no real impact
on the accuracy of the prediction model.

*
Note at very high frequencies, bending of the rail head and base
become important and act to increase the phase velocity. For
RE 115 rail this effect is significant above 13,000 Hz.
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I.4 Effect of a Nonrigid Support Under the Fasteners

In the simplified model we represent the rail support as
a continuous visco-elastic foundation on a rigid support. In a
realistic case the track structure under the rail fasteners is
not rigid. However, we can continue to use the models developed
in earlier Sections by replacing the rail fastener stiffness and
damping by an effective impedance that takes into account the
motion of the track support structure.

The impedance of a continuous visco-elastic foundation on
a rigid support, Zf(m), is given by

K1(1 + i nf)

Ze(w) = S (I.63)

where Kz is the foundation stiffness per unit length of rail, w
is the radian frequency and Ne is the foundation damping loss
factor. When the support structure is not rigid the effective
impedance, Z, becomes both a function of frequency and the wave-
number of the rail vibration. The effective impedance is

Z2.(w) Z_ (k_,w)
Z(k,,w) = £ s x’ (I.64)
Ze(w) + Z_(k,0)

where Zs(kx’w) is the impedance of the track support structure

and kx is the wavenumber. Note that in the limiting case, when
the foundation is rigid, Zf = », the impedance presented to the
rail is the impedance of the track structure. When the foundation
is very soft, Zf = 0, the impedance is equal to the impedance of
the fastener.

Two types of track support are of interest for this report:
a concrete deck on an elevated structure, and an open deck of

213



ties on an elevated structure. In the case of elevated structures,
we are interested in moderate and high frequencies, above
approximately 100 Hz. At these frequencies the impedance of the
deck can be modeled by the impedance of an infinitely wide plate
in the case of the cdncrete deck or a series of infinitely wide
ties. For the concrete deck

2_(k,,0) = s_5 1 (I.85)

where BS is the bending stiffness of the deck and

k = S (I.66a)

3 7 )
Sk -2 if k> k (I.66Db)
k. = - i/ ki - kz if k< k (I.66c)
) Y
kS + kx (I.864d)

and ps is the mass per unit area of the deck. The wavenumber kS
is the wavenumber for free bending waves in the concrete deck.
For small values of kx’ the impedance becomes simply the line

. impedance of an infinite plate,

w p

Z Cksw) = 2 (1 + i) kss (I.67)
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This impedance consists of a mass term, 2 i u)ps/ks , and a
damping term, 2 wps/ks. For typical parameter values (RE 115
rail and 9 inch-thick concrete deck)

m, = 115 1bs/yd (I.68a)
12,780
Ms,eff T 1bs/yd (K <<k.) (I.68b)

For frequencies below 12,350 Hz, the effective support mass is
greater than the rail mass. Thus, for the frequency range of
interest in this report the concrete deck can be treated as rigid
in calculating the rail vibration.

For high wavenumbers the support impedance approaches
infinity so that again the deck can be treated as a rigid support.

Wavenumbers very close to kS present a problem in that our
model using the impedance of an infinite plate is not valid.
Effects associated with vehicle speed, column supports, and the
finite width of the deck all enter in determining the impedance
in this narrow range of wavenumbers. The model of an infinite
plate shows the impedance going to zero at k= ks' This will
not happen in the actual case, although the impedance may become
small. If the impedance were to become smaller than the impedance
of the fastener, then the rail damping due to compression of the
fasteners would be greatly reduced. However, this would occur in
a very limited frequency range so that we assume the overall
effect to be negligible.

When the rails are fastened directly to an open wood tie
deck, the representation of the deck impedance is very difficult.
In nearly every case the rails are mounted close to the webs of the
supporting girders. To first approximation the line impedance of
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the ties and girders can be represented simply by the mass per
unit length of the girders. We assume that this mass is greater
than the mass per unit length of the rail so that the support
under the ties can be assumed to be rigid in calculating the rail

vibration.
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APPENDIX 11
PREDICTION MODEL FOR LOW FREQUENCIES

At frequenciés below the resonance frequency of the rail
on its supporting-eleﬁents (resilient fasteners or wood ties), the
vibration of the rail is confined to the region near the excitation
point. TFreely propagating vibration waves do not exist at these
low frequencies. To apply the coupled oscillator approach we must
take into account the fact that for each value of wavenumber, kx,
the modal response for the rail is nonresonant and stiffness con-
trolled, since the frequency is below the modal resonance frequency.
To first approximation the forces on the rail are transmitted with-
out attenuation to the deck. However, because of the bending stiff-
ness of the rail the forces which are applied to the rail at dis-

creet points are distributed along a line under the rail.

To use the coupled oscillator approach and Statistical
Energy Analysis we calculate the time-average power input to the
cross-modes of the deck. Then, we proceed to balance net power
input with power dissipated for the deck and for the remaining
structural elements. Once the power input to the deck has been
found the analysis is similar to that carried out in Sections 3.2
and 3.3, although some of the simplifying assumptions must be re-
evaluated. In Section 3.2 we assumed that the interaction between
the rail and other elements was dominated by the interaction at
the free bending wavenumber, kr’ for the rail. This assumption is
not valid for frequencies below the rail/fastener resonance fre-
quency, since the wavenumber, kr’ given by Eq. 2.35 is not a real

number,
The vibratory response of the rail to a point force excita-

tion can be described in terms of Fourier transform in time and

the spatial dimension along the rail. The result is given by
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Eq. 2.31. At low frequencies we can ignore the wzmr term in
Egq. 2.31 and the fastener damping so that the transform of the
rail velocity is given by

V(K ,w) = ———£9—7r—— F(w) (IT.1)
X K. + k'B
2 X r

where kx is the wavenumber, w is the radian frequency, Kl is
the effective stiffness of the fasteners per unit length of the
rail, and Br is the bending stiffness of the rail. The transform

of the force applied to the deck, Fd(kx,w), is given by

A K A
- 2
Falk,,w) = 3= V Gk ,w) (II.2)

Combining Egs. II.1 and II.2 we find

Fd(kx,w) _ 1

(IT.3)

B

4 “r
+ I
1 kX Kg

F(w)

Eq. II.3 shows that the transform of the force on the deck is

greatest at low wavenumbers.

In Appendix III we compute the time-average power trans-
mitted from a beam to a plate as a function of wavenumber, K
The calculation is valid regardless of whether the rail response
is resonant or nonresonant. The parameter s in Eq. III.1l1l for
the coupling loss factor is given by
kx
s = = (IT1.Ww)
p
where kp is the free bending wavenumber for the plate. Referring
back to Eq. II.3 we note that the transform of the force on the

deck is small when ki > Kl/Br’ Thus, to calculate the power input
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to the deck we can use the coupling loss factor given by Eq. III.1ll

with s = 0 as long as the condition below is met:

1/4
kS > (Kz/Br) (II.5)
where from Eq. III.4 b
1/4
kS = (ps/Ds) vuw (II.86)

where Pe is the density of the deck per unit area and D is the
bending stiffness of the deck.

For the case of a typical concrete slab deck with parameters
given in Fig. 4.6 and Table 4.1 the condition given by Eq. II.5
becomes

f > 184 Hs (II.7)

Unfortunately, this condition does not apply at the lowest
frequency band of interest which is centered at 63 Hs. Thus, we
must divide the low frequency prediction model into two regions.
At frequencies below the frequency at which Eq. II.5 is valid, we
use the coupling loss factor given by Eq. IIT.11 with kX = ks or
s = 1 to calculate the input power to the deck. At frequencies
between the frequency at which Eq. II.5 is valid and the rail/
fastener resonsance frequency we use Eq. III.11 with kx = 0 to

calculate the input power.
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APPENDIX III

COMPILATION OF COUPLING LOSS FACTORS

In this Appendix we calculate certain average coupling
loss factors which are required to study the vibration trans-
mission in elevated structures. Some of these loss factors have
been determined in the literature, but we include here explicit
calculations for completeness. In every case the wave calcula-
tion procedure as outlined in Ref. 11 will be used. Thus, the
results presented are coupling loss factors for the modes of
two coupled structures averaged over the separation between their

resonance frequencies.

Coupled Beam and Plate

Consider a Bernoulli-Euler beam coupled to a Bernoulli-
Euler plate by a continuous elastic foundation, as shown in
Fig. III-1. Both the beam and plate are infinite along the x-
axis. Although the plate has a finite width, we calculate the
average coupling loss factor between the beam and the plate by
assuming the plate to be infinite along the y-axis. We proceed

by taking a prescribed wave disturbance on the beam of the form

R -i(k x-wt)

ub(x,t) = U e (III.1)

* The resulting force on the plate, fp(x,t), is denoted as

-i(kxx-wt)

fp(x,t) = ?p e (III.2)

where
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up (x,1)

up(x,y,t)
BEAM: my,Dyp

¥
=X __ /__[/
/ PLATE: P,,Dp

BEAM & PLATE CONNECTED BY A CONTINUOUS ELASTIC LAYER

m, BEAM MASS PER UNIT LENGTH

B, BEAM BENDING STIFFNESS, Dp= Ep I,
Pp PLATE MASS PER UNIT AREA

Dp PLATE BENDING STIFFNESS, Dp= Ep I,

fo

SIGN CONVENTION FOR SHEAR FORCES ACTING ON THE TWO HALVES OF THE PLATE

FIG.III.1 COUPLED BEAM AND PLATE
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F =K [Ub - Up(y=0)],

U (y=0) is the complex amplitude of the plate displacement

at y = 0 and K is the foundation stiffness per unit length.
Due to symmetry, only the y > 0 portion of the plate need be
considered. The plate displacement amplitude obeys the homo-
geneous plate equation so that for y > 0

. ~ -iky . -/ k;+k2 y
Uy) = Up e s U, e p (III.3)
P 1 2
where
k2 = k% - k2 (IIT.4a)

and kP is the free bending-wavenumber for the plate,

k. = (o /DH)YY (ITI.ub)
P P’ P

and P_ is the plate density per unit area and Dp is its bending
stiffness. The angle, 6, given by

sin 6 = kx/kp (ITII.5)

is the angle between the direction of propagation of waves in
the plate and the normal to the beam-plate junction. Since the force,

fp’ given by Eq. III.2, acts at y = 0, the boundary conditions
for the plate at y = 0 are

3

¥ u £
D ———E + (2 - v) —R = —22 (III.6a)
Pl ay3 ax’ dy
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and by symmetry

_552 = 0 | (III.6b)

where v is the Poisson's ratio. Substituting Egqs. III.2 and
ITII.3 into Eq. III.4 and solving for OP , we find

1
R “bp /1l+s? n
U = U (III.7)
Py K, /1+s? + i/1+s? (2/14s? -k, ) P
bp bp
where
s = sin o
and
3
= K,/(2 D_ k
Kbp 2 ( b p)

Note that K, and Kbp may be complex to account for damping in
the elastic layer.

From Eq. III.7 we now calculate the total power trans-
mitted to the plate. The average power passing through a unit
length of wave front is °p %p w? IGEJZ’ where °5 is the bending
wave speed for the plate, cp = w/kp. Then the total average
power from the beam to the plate per unit length of rail is

- 2 n 2
wb,p = 2 pp Cp @ IUPJ cos 9 (III.8a)
or
2 2
2 pec_w |k _]° (1+s2) /l+s? N
W o= R_p bp > 1017 (111.8b)
2P ]Kbp/i*-sI + i/1+s? (2/1+s? - Kbp)l
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where the previous results have been multiplied by 2 to account
for both sides of the plate.

The average energy of the beam per unit length is

- 1 2 a2
T, = 7 m o U] (I1I.9)

The average beam to plate coupling loss factor is given by

n = _bop (III.10)
b,p w Tb

Substituting Egs. III.8b and III.9 into Eq. III.10 we find

;—iB 3% |2 (1+s?) V/1-s?
pb P

(ITI.11)

n
b,p
’ )|2

1452 + i/1+s2 (2/1+s2 - Kbp

I Kbp

Coupled Plates - Vibration Transmitted by Moments

Consider two plates "a" and "e" connected through a rigid
right-angled junction as shown in Fig. III.2. Both plates are
considered infinite along the x-axis. In this section we consider
vibration transmission from plate a to plate e due to moments at
. the junction. In the next section we will consider vibration
transmission due to forces at the junction. Although both plates
are finite in the y-direction, we calculate the coupling loss
factor by assuming plate a to be infinite and plate e to be semi-
infinite extending from y = 0 to infinity.
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Zqg
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\PLATE "a": Pp, +Dp,
L 1
Pe |V,
T | PLATE "s": Py, Dp,
Vi
B N

P,,i PLATE MASS PER UNIT AREA, i=a,e
Dp, PLATE BENDING STIFFNESS, i=a,e

FIG. TI[.2 TWO PLATES CONNECTED THROUGH A RIGID,
RIGHT-ANGLED JUNCTION
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Following the wave calculation procedure, we allow bending
waves in plate a to impinge on each side of the junction between
plates. The incident waves are taken in the form

~ -i(k vy + kxx - wt)
u_ (x,y,t) = U e y (III.12)
Pa aj

where ky is given by Eqs. III.4. The time-averaged power incident
on both sides of the junction per unit length is

(ITI.13)

where pp is the mass per unit area for plate a, cP is the free
a a
bending wavespeed in plate a, w is the frequency and the angle 6

is given by Eq. III.S.

The incident wave complex amplitude, Ua can be related to
i
the modal energy, Tp , 8ince the vibration associated with a
a
cross-wise (y-direction) normal mode in the plate can be described

in terms of waves of equal energy travelling in the +y and -y
directions. The time-average modal energy equals the energy per
unit length in the x-direction, which is given by

(III.1W)

where Lp is the width of plate a in the y-direction.
a

The average coupling loss factor between plate a and
plate e is given by
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n = =2 (III.15)

where Wa e is the time-average power transmitted f:om plate a to
9
Plate e per unit length along the junction. If we define a

transmission coefficient, Tie ° such that

W = T W. (III.16)

(IIT.17)

where Eqs. III.4a and III.5 have been used to eliminate 6.

To calculate the transmission coefficient. we consider the
‘three semi-infinite plates, joined at right angles, as shown in
Fig. III.3. We consider an incident wave at a given frequency,
w, and x-component of wavenumber, kx’ propagating on plate 1 and
determine the resulting bending wave on plate 3. Since only
vibration transmission due to moments is being considered, we
assume the in-plane motion in each plate to be negligible.
Then, the problem is posed solely in terms of out of plane
displacements and bending moments at the junction. With the
conventions and local plate coordinates as shown in Fig. III.3,

" the relations between bending moments and displacements at the

junction are

2 2
] ui 9 u.
M = D 7+ v 21 , i=1, 2 (III.18a)
pa
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FIG.JL. 3 COORDINATE AND MOMENT SIGN CONVENTIONS
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2 2
d ug d uy
M = D + Vv —s- (ITI.18b)
Y3 Pe 3y2 Pe 3x2
WMamavp and vp  are the Poisson ratios for plates a and e.
a e

The displacements satisfying the homogeneous plate equations are .

—i(kxx - wt)

ui(x,y,t) = ﬁi(y) e with i = 1,2,3
(III.19a)
where
-i./k; - k; y i./k; - k; y /k; + k; y
" I a " a A a
Ul(y) = Ul+ e +U1_ e + Uli e
(III.19b)
- 2 - 2 - 2 + 2
) . i /kpa kX y A /kpa kX y
U2(y) =z U2+ e + U2—i e (III.19¢)
-i k; - k; y -/k? +Xk%y
U3(y) = U3+ e + U3_i e (III.194)

In Eqs. III.19 Uiy corresponds to incoming waves in plate 1 and
is assumed to be known and U3+ corresponds to out-going waves
on plate 3. The boundary conditions at y = 0 are

1 2
fuy w2y (III.20)
oy 3y oy

M -M -M = 0



The first three relations follow from neglecting in-plane motions
and the second three require that the junction angle be preserved.

The last condition merely states moment equilibrium.

Substituting Eqs. III.19 into Egs. III1.20 one obtains
relations through which Uli’ U2-i’ and U3—i
terms of the coefficients of the propagating part of the field.

may be expressed in

Using Eqs. III.18 and Eqs. III.19, the remaining conditions of
Eqs. III.20 become

Uys [a-i/1+s%] - U _ [a+/1+s?] = U,, [a+i/1+s?] (III.2la)

[a+i/1+s2] = U,, [/?-s82 + i/k?2+s? ] (III.21b)

Ups 3+
Wo, + W= W, oty W, (III.21c)
where
kx
o = s s = (III.214)
P4
and
Xk D k
Po Pg Po
Yy = = K = (III.21le)
k D
Py Py Pa

Finally, Egs. III.21 may be solved for U3+ in terms of Ul+'

Doing this, one arrives at the transmission coefficient,
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T =y ' 3| k2 - st (III.22)
ase I B

- Y /1-s2 /k2-52
€ w272 + Y[V1-s2 ZI- sZ + J/i+s? JcZ+sZ] + 2 k?

T (III.23)

The coupling loss factor for bending waves in plate "a" and bending
in plate "e" is

a2 2_o2
(q)/kpa Lpa)(l s%) Yké-s

n -
3¢ w272 + Y[/1-s2 fZ- sZ + Jf14s? NZ4s? ] + 2¢?

(III.24)

Coupled Plates - Vibration Transmitted by Forces

We consider the 'same situation as above except that the
vibration transmitted by forces at the junction is of interest.
We assume that a bending-wave in plate "a" impinges on the

junction between the two plates. Defining N, e as the power
9
u
transmitted by forces at the junction into in-plane motion of

plate "e" divided by power incident on the Jjunction one finds

that the corresponding coupling loss factor, Nie ? is
b
u
Ta,eu kx 2 _
na,eu = T y 1 - (k—) (IIT.25)
Pa Pa Py
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To calculate the transmission coefficient, T, e > We
*™u

consider three semi-infinite plates as shown in Fig. III.u4. It

is assumed that the bending rigidity of plate 3 is much less than
that of plates 1 and 2. Therefore, for the purpose of calculating
the transmission coefficient, Ta,ey? bending moments transmitted
to 3 may be neglected so that 3 is essentially pinned to plates

1 and 2. Suppose that an incident bending wave exists on plate 1
and we wish to calculate the resulting in-plane displacement in
plate 3. First, since no bending moments are transmitted to 3,
there is no bending motion in that plate and consequently the
in-plane motions of plates 1 and 2 may be neglected. This being
the case, the power delivered to plate 3 is mostly due to vertical
forces, Fy3, so that the in-plane motion of plate 3 may be
approximated by longitudinal waves propagating normal to the
junction. Then, the only non-zero displacements are the out of
plane displacement uy and u, and the in-plane y-component in

2
plate 3, uy3.

We can formulate the problem solely in terms of the bending
moments Myl’ Myz, shear forces Syl’ Sy2 and axial force Fy3 at the

junction. These forces and moments are related to the displacements

by

22y Bzul
M = D + v (III.26a)
Yi P4 8y2 P4 8x2

r33ui 83 us

= + - —_— i =
Sy Dp 3 (2 Vp ) 5 i 1, 2 (IIT.26b)
i a | oy a 9x° dy
2 dug

F = ¢ p —-—= = - c u (III.26c)
yl 2,e Pe oy Pe L,e Y3

232




PLATE "1"
\
2
- PLATE "2"
PLATE "3"__.3'

IDEALIZED APPROXIMATION FOR CALCULATION OF TRANSMISSION
OF BENDING WAVES IN PLATE 1 TO LONGITUDINAL WAVES IN PLATE 3
A PINNED CONNECTION BETWEEN 18& 2 AND 3 IS ASSUMED

1 b 4 “Z
: ’
Myl Myz
, —!) (= -
" ll/ \ "wan
PLATE Syl 1Fy3 Sy2 PLATE 2
- Z
PLATE "3" —t l
Uy3
1y

COORDINATE, FORCE AND MOMENT CONVENTIONS USED

FIG. IT.4 COORDINATE ,MOMENT, AND FORCE SIGN CONVENTIONS
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where ¢, is the longitudinal wavespeed in plate 3. The displace-
9

ments satisfying the wave equations can be written

‘ " —i(kxx—mt)
ui(x,y,t) = Ui e (i = 1,2) (III.27a)
R —i(kxx-mt)
u_ (x,y,t) = U e (III.27Db)
Yi Vi
where

. -ikgy . -ikgy o Aty Y

= + .
U1 U1+ e Ul— e + Uli e (III.28a)

-lk y = k;+k; y
0, = Uy e YV +0,e a (III.28D)
A _ A -ﬂ(zy
O, = Oy 3¢ (III.28c)
3 b}
where
k2 o= k2 - k2 (III.28d)
y p, X
K, = — (III.28e)
2 c
l,e

"~ where ﬁl+ and ﬁy 3+ correspond to the incident bending waves in
2

plate 1 and the out-going longitudinal waves in plate 3,

respectively. The boundary conditions at y = 0 are
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0. = 6. = -0 , (III.29a)

1 2 Y3
a0 30 _

1 - °Y2
5 Ty (III.29Db)
S -8 +F = 0 (III.29¢c)

M -M = 0 (III.294)

Substituting Eqs. III.26 and III.27 into these conditions gives
one set of equations which then can be solved for the ratio

Uy,3+ to U1+' Then the transmission coefficient Ta’eu 1s given
by
p c k ~ 2
p, %e p_ (U
. - % e ——2 [ Y,3* 1 - (III.30a)
3
u pa U1+ 1-s
or
P c
P, %e p b
Tie = — /_‘: 1-s 5 (III.30Db)
] -
u 2 ePa w/l-s (/1-s"* + % Arst)? 4 %E (1-s2)
where
cz,e pp w
A= (III.30¢)
k- D
Pa Py
and
k
s = = (III.30d)
Py

235



Hence, from Eq. III.25, the coupling loss factor ", e between
b4

bending in plate "a" and in-plane "e" is u
o C
P L,e ol
na,eul . pewI’J 1-s > (III.31)
Py Pa  (/1-s* + % S+sh? 4 %E (1-s2)

where A and s are given by Egqs. IIT.30c and III.30d.
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APPENDIX 1V
REPORT OF INVENTIONS APPENDIX

This report presents the development of a noise pre-
diction model for rail transit elevated structures. After
a diligent review of the work performed under this contract
it was found that no new inventions, discoveries, or improve-

ments of inventions were made.
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